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A B S T R A C T   

Obtaining geological information at depth by lower-cost proxies is important. Apatite grains from hydrothermal 
quartz veins and their host K-feldspar altered granites from the Jiaodong gold province reveal key insights into 
the buried rocks and vertical distribution of ores at depth. Two types of apatite grains from hydrothermal quartz 
veins and their host K-feldspar altered granites are identified. Type I apatite grains in granites coexist with 
amphibole and feldspar, indicating a magmatic origin. They yield U-Pb Tera–Wasserburg concordia lower 
intercept dates of 162 ± 13 Ma and 158 ± 9 Ma, which are within uncertainty of zircon U-Pb dates of ca. 160 Ma, 
representing the crystallization ages for these rocks. Support vector machine (SVM) apatite classification biplots 
show that the Type I apatite grains have lower LREEs than their I-type granitoid protolith, indicating that LREEs 
were leached during alteration, which is also suggested by monazite inclusions in altered domains of the Type I 
apatite. Apatite xenocrysts (Type II) are observed in hydrothermal veins and yield Tera–Wasserburg concordia 
lower intercept dates of 227 ± 3 Ma and 227 ± 4 Ma. Two subsets of Type II apatite are recognized. SVM apatite 
classification biplots show that they were derived from the Late Triassic S-type granites and high-grade meta-
morphic rocks related to the Late Triassic collision between North China and South China blocks. These rocks 
were less than 11 ± 1 km under the paleosurface during gold mineralization (ca. 120 Ma) estimated by the 
closure temperature of apatite U-Pb system (460 ± 10 ◦C), surface temperature at Jiaodong (20 ◦C), and pale-
ogeothermal gradient (40 ± 5 ◦C/km). Given the ore-forming paleodepth of about 7 km calculated by previous 
fluid inclusion works, the unaltered Type II apatite xenocrysts mark that gold ores in the footwall at Jiaodong 
didn’t exceed 4 ± 1 km vertically relative to the sample location. The high preservation potential for apatite in 
hydrothermal veins illustrates the potential to employ apatite xenocryst as a powerful tool for determining 
buried rocks at depth.   

1. Introduction 

Hydrothermal xenocrysts are crystals that are foreign to the hydro-
thermal system as a whole, which have been incorporated into the hy-
drothermal fluid from the surrounding host rocks at some point during 
transport by a physical process (Jerram et al., 2018). They, as well as 
xenoliths and magmatic xenocrysts, are among the few types of mate-
rials that permit direct study of the Earth’s upper mantle and deep burial 
of crustal material (Meisel et al., 2001; Liu et al., 2014; Cao et al., 2019; 

Qiu et al., 2021b; Wang et al., 2021; Yu et al., 2021b). There has been a 
rise in interest in studying xenoliths and xenocrysts, promoting the un-
derstanding of the formation and evolution of mantle and lower crust 
(Siebel et al., 2009; Tapster et al., 2014; Li et al., 2020). However, the 
buried upper crust lacks constraints. Apatite is a common accessory 
mineral in continental crustal rocks (Hetherington and Harlov, 2008; 
Chew et al., 2014; Chew and Spikings, 2015; Kusiak et al., 2018; Szopa 
et al., 2020; Cao et al., 2021; Li et al., 2021; Yu et al., 2021a). Its U-Pb 
closure temperature varies from 350 ◦C to c. 570 ◦C and thus remains 
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isotopically closed through a hydrothermal fluid but will open through 
medium- and high-grade metamorphism and magmatism (Chamberlain 
and Bowring, 2000; Cherniak et al., 1991; Chew and Spikings, 2021; 
Odlum and Stockli, 2020). This implies the predominance of first-cycle 
of apatite xenocryst, offering a prime opportunity to reveal signatures of 
the buried upper crust. 

The giant Mesozoic Jiaodong gold province in East China has been 
estimated to contain up to 5,000 t gold (Fan et al., 2016; Yang et al., 
2018; Goldfarb et al., 2019; Deng et al., 2020c; Qiu et al., 2020a). In 
recent years, mineral exploration has focused on progressively deeper 
targets as the new surface exposures and shallow deposits are discovered 
less frequently (Wen et al., 2016; Ma et al., 2017). However, deep 
drilling programs are expensive and obtaining other lower-cost proxies 
for the buried rocks and vertical distribution of ores is important. 
Apatite grains from hydrothermal quartz veins and their host K-feldspar 
altered granites from the Linglong goldfield in the giant Jiaodong gold 
province were analyzed by LA–ICP–MS for U–Pb isotope dating and their 
trace element systematics. In addition, the vertical distribution of the 
gold mineralization was estimated by the apatite U–Pb closure system 
and paleogeothermal gradient. These findings confirm that apatite 
xenocryst is an indicator mineral for revealing buried rocks and 
furthermore may be used to reveal the vertical distribution of ores. 

2. Regional geology of the Jiaodong peninsula 

The NE-trending Jiaodong Peninsula is surrounded on three sides by 
the Yellow Sea and Bohai Sea and to the west by the NNE-striking Tan-Lu 
fault (Fig. 1). The bedrock geology of the Jiaodong Peninsula is 
comprised of the Jiaobei terrane in the northwest and the Sulu terrane in 
the southeast, separated by the NE–trending Wulian–Qingdao–Yantai 
fault (Goldfarb et al., 2014; Deng et al., 2018; Guo et al., 2020; Sai et al., 
2020; Zhang et al., 2020b). The Jiaobei terrane is comprised of the 
Jiaobei uplift in the north and the Jiaolai basin in the south. Precam-
brian metamorphic rocks comprise about two-thirds of the exposed 
bedrock in the Jiaobei uplift (Mills et al., 2015; Deng et al., 2020b; Qiu 
et al., 2020a). The Sulu terrane in the east Jiaodong peninsula is 
dominated by ultra-high pressure (UHP) metamorphic rocks, which 
formed at ca. 245–210 Ma during the Triassic collision between the 
North China and South China blocks (Dou et al., 2018; Liu et al., 2018). 

Widespread intrusions were emplaced into the Precambrian base-
ment terranes and yielded four distinct age peaks: Late Triassic, Late 
Jurassic, middle Early Cretaceous, and late Early Cretaceous (Fig. 2; Fan 

et al., 2003; Goldfarb et al., 2019; Deng et al., 2020a). The Late Triassic 
alkaline granitoid suite was emplaced in small volumes in the south-
eastern Jiaodong peninsula (Fig. 2). These rocks were emplaced 
contemporaneously with exhumation following the continental collision 
(Liu et al., 2017; Zhao et al., 2017). The Late Jurassic (165–145 Ma) 
granitoids (Linglong suite) together form the largest pluton emplaced 
into the Precambrian basement across the peninsula (Fan et al., 2016). 
They are dominantly granite and granodiorite, and their geochemical 
characteristics indicate that they were most likely derived from partial 
melting of thickened Archean mafic lower crust without any significant 
contribution of mantle components (Qiu et al., 2020a). The middle Early 
Cretaceous (ca. 130–122 Ma) granitoids (Guojialing suite) are domi-
nated by porphyritic granodiorites. These rocks have been suggested to 
be related to rollback of the Izanagi slab (Goldfarb and Santosh, 2014; 
Yang et al., 2016; Deng et al., 2020a). The late Early Cretaceous (ca. 
119–110 Ma) intrusions (Aishan suite) mainly crop out in the Sulu 
terrane. They are composed of granodiorite, syenogranite, and mon-
zodiorite. Their adakitic geochemical features suggested that they were 
derived from partial melting of thickened Neoarchean-Paleoproterozoic 
lower crust, with weak crust-mantle interaction (Fan et al., 2003; Li 
et al., 2019). 

A thick succession of Mesozoic sedimentary rocks filled the Jiaolai 
basin, and was deposited on the Precambrian basement. The initiation of 
the Jiaolai basin was likely caused by transtensional motion along the 
Tan-Lu fault (Goldfarb et al., 2019; Qiu et al., 2020a). The basin fill 
consists of fluvial-lacustrine clastic rocks, volcanic rocks, and red beds 
intercalated with mafic to ultramafic lavas. Abundant flora and fauna 
and zircon geochronology imply that the succession was deposited in the 
Cretaceous (Xie et al., 2012; Guo et al., 2017; He et al., 2020). 

More than 95% of the Jiaodong gold resource is hosted by Mesozoic 
granitoids and is controlled by NE- to NNE-trending faults (Yang et al., 
2016; Deng et al., 2019; Goldfarb et al., 2019). From west to east, much 
of the gold resource at Jiaodong is found within the San-Cang, Jiao-Xin, 
Zhao-Ping, Qi-Peng-Fu, northeast Jiaolai basin, and Mu-Ru gold dis-
tricts. The ore-bearing zones are characterized by quartz-sericite-pyrite 
alteration, which partially overprinted earlier K-feldspar alteration (Fan 
et al., 2016). The ores are mainly divided into disseminated-stockwork 
type and auriferous quartz vein type (Wen et al., 2015; Guo et al., 
2017). Auriferous carbonate vein and breccia types are limited in area 
and mainly occur in the northeast Jiaolai basin. Much of gold mineral-
ization events occurred at ca. 120 Ma as determined by a variety of 
different dating methods (Ma et al., 2017; Deng et al., 2020c; Zhang 

Fig. 1. Simplified geologic map of East Asia showing the location of the Jiaodong gold province. Modified after Qiu et al. (2020b).  
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Fig. 2. Simplified geologic map of the giant Jiaodong gold province. Modified after Qiu et al. (2020b).  

Fig. 3. Simplified geological map of the Linglong goldfield, showing the distribution of major faults and the Dongshan and Dakaitou gold deposits. Modified after 
Guo et al. (2020). 
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et al., 2020b). Devolatilization of the subducting Izanagi slab driving 
substantial volumes of fluids and associated metals along the NE- to 
NNE-trending faults is potentially the major factor controlling the 
extensive gold mineralization (Yang et al., 2018; Goldfarb et al., 2019; 
Qiu et al., 2020a). 

3. Local geology of the Linglong goldfield 

The Linglong goldfield is located in the north of the Zhao-Ping gold 
district (Fig. 2). Metamorphic rocks of the Neoarchean Jiaodong Group 
are exposed in the east of the goldfield, and are dominated by 2.9 to 2.6 
Ga tonalite-trondhjemite-granodiorite gneisses (Mills et al., 2015; Qiu 
et al., 2020a). The most voluminous intrusions in the Linglong goldfield 
are represented by the Late Jurassic Linglong intrusive suite. The suite 
was emplaced into the Neoarchean Jiaodong Group and includes the 
Linglong biotite granite and the Luanjiahe monzonitic granite (Dou 
et al., 2018). The Early Cretaceous Guojialing porphyritic granodiorite 
which contains characteristic very coarse K-feldspar phenocrysts was 
emplaced in the remainder of the region. Numerous NE- to NNE- 
trending intermediate to mafic dikes, consisting of quartz diorite por-
phyry, diorite porphyry, and lamprophyre were emplaced into the 
Linglong suite (Fig. 3). The dikes range in age from 132 to 86 Ma, with a 
peak at 121 Ma (Deng et al., 2017). The NE-striking Potouqing fault is 
the main northern branch of the Zhaoyuan-Pingdu fault system. It is 
more than 15 km long and 40 to 320 m wide, with a dip varying between 
28◦ to 47◦ SE (Guo et al., 2017). The Jiuqujiangjia fault in the footwall of 
the Potouqing fault (Fig. 3) is one of a series of secondary faults. The 
NNE-striking Linglong fault offsets the Potouqing fault and is thus a post- 
gold late brittle feature (Guo et al., 2020; Qiu et al., 2020a). 

The Linglong goldfield comprises more than ten deposits such as 
Dongshan and Dakaitou, with a total gold resource of ~ 1000 t (Guo 
et al., 2020; Qiu et al., 2020a). Much of the gold resources are in the 
footwall of the Potouqing fault and are controlled by a zone of structural 
complexity (Figs. 3, 4). Gold mineralization is dominated by a series of 
more than 30 auriferous quartz veins. The veins and related hydro-
thermal alterations strike to the northeast and dip to the northwest. The 
alteration is characterized by pinkish K-feldspar alteration forming an 
outer halo and quartz-pyrite-sericite alteration forming an inner halo 
(Fig. 5). The ore minerals are primarily pyrite, with lesser chalcopyrite, 
galena, sphalerite, and native gold. The gangue minerals mainly consist 
of quartz, sericite, K-feldspar, and calcite. 

4. Sampling and analytical procedures 

4.1. Sample description 

Four representative samples of the Linglong granites with K-feldspar 
alteration (two samples) and hydrothermal quartz veins (two samples) 
were collected from the Dongshan and Dakaitou deposits in the Linglong 
goldfield (Table 1). The sample locations are marked on Figs. 4 and 5. 
The pinkish to yellowish K-feldspar altered Linglong granite samples 
(DS01 and DKT01) are characterized by stockwork and disseminated 
structures (Fig. 6A, C). The main minerals are quartz, plagioclase, 
amphibole, biotite, K-feldspar, sericite, and chlorite, with minor 
monazite-(Ce) and hematite (Figs. 6-9). Amphibole is dominated by 
pargasite (Sai et al., 2016) and is partially chloritized (Fig. 9A). K- 
feldspar occurs as variously sized patchy shapes from 20 to 600 μm wide 
(Fig. 7A) with a chemical composition of Or91 to Or98 (Wang et al., 
2020). Monazite-(Ce) grains occur in clusters associated with sericite or 
occur as inclusions in apatite (Fig. 9A). The gray quartz-sulfide-gold 
hydrothermal vein samples (DS02 and DKT02) are mainly composed 
of quartz, pyrite, and sericite (Figs. 6B, D; 7B). 

4.2. Mineral separation 

Mineral separation was conducted at the Langfang Chengxin 
Geological Service Co., Hebei Province, China. Mineral separation 
employed conventional sieving followed by magnetic and heavy liquid 
separation methods. Zircon and apatite separates were handpicked and 
were mounted in epoxy resin and polished down to near half thickness to 
expose internal structures. Polished mounts were then carbon coated for 
cathodoluminescence (CL) imaging using a JXA-8800 scanning electron 
microscope at the Langfang Chengxin Geological Service Co., Hebei 
Province, China, and a Tescan GAIA 3 electron microscope at the 
Analytical Laboratory of the Beijing Research Institute of Uranium Ge-
ology, Beijing, China. The detailed operating conditions were provided 
in Yu et al. (2020). 

4.3. Electron probe micro-analysis of apatite 

Electron probe micro-analysis (EPMA) on apatite were carried out at 
the Shandong Key Laboratory of Geological Processes and Resource 
Utilization in Metallic Minerals, Shandong Geological Sciences Institute, 
China, with a JEOL JXA-8230 Electron Probe Micro Analyzer. The 
analytical conditions employed an accelerating voltage of 15 kV, a beam 
current of 20 nA, and a beam diameter of 1–5 µm. The full analytical 
procedures were provided in Qiu et al. (2019). 

Fig. 4. Geological profile across the orebodies of the Linglong goldfield, showing the sample locations. Modified after Wen et al. (2015).  
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4.4. Zircon and apatite LA–ICP–MS U–Pb dating and trace element 
analyses 

Zircon U–Pb isotope analyses were conducted by LA–ICP–MS at the 
Isotopic Laboratory, Tianjin Center, China Geological Survey using a 
Neptune double focusing multiple-collector coupled to a NEW WAVE 
193 nm-FX ArF Excimer laser-ablation system. The detailed operating 
conditions and data reduction procedures follow those described in 
Geng et al. (2017) and Yu et al. (2021a). 91500 zircon (Wiedenbeck 
et al., 1995) and Plešovice zircon (Sláma et al., 2008) were used as the 
age reference materials. Apatite U–Pb isotope and trace element ana-
lyses were conducted by LA–ICP–MS at the Isotopic Laboratory, Tianjin 
Center, China Geological Survey, Tianjin, China and Yanduzhongshi 
Geological Analysis Laboratories Ltd., Beijing, China using an Agilent 
7900 ICP–MS and an Analytik Jena M90 quadrupole ICP–MS coupled to 
a NEW WAVE 193 nm-FX ArF Excimer laser-ablation system, respec-
tively. Otter Lake apatite (Barfod et al., 2005) and MAD2 apatite 
(Cochrane et al., 2014) were used as the age reference materials for 
apatite U–Pb geochronology analyses. The NIST SRM 610 and 612 
reference material glasses were used as an external reference material 
for trace element determinations on zircon and apatite, respectively. The 
internal element standard isotope was 44Ca for apatite trace element 
analyses. Age calculations and concordia plots were reported at the 2σ 
uncertainty level and were processed using the Isoplot software (version 
3.75; Ludwig, 2012). The downhole fractionation, instrument drift and 
mass bias correction factors for Pb/U ratios on apatite follow those 
described in Chew et al. (2011). 

5. Analytical results and interpretations 

5.1. Zircon morphology and LA–ICP–MS U–Pb dates 

The zircon morphology and U–Pb dating results are illustrated in 
Fig. 8 and presented in supplementary table 1. Most zircon separates 
from K-feldspar altered Linglong granite (DS01 and DKT01) are pristine 
and euhedral and display well-developed oscillatory, lengthwise, and 
sector growth zoning, revealing a magmatic origin (Fig. 8A; Yu et al., 
2021a). The crystals have lengths of 80–200 μm and length/width ratios 
of 2 to 4. The crystallization age of the Linglong granite is determined by 
14 concordant dates from sample DS01 and 12 concordant dates from 
sample DKT01. The DS01 dates show Th and U contents of 28 to 285 
ppm and 44 to 600 ppm, with Th/U ratios ranging from 0.38 to 1.21, and 
yield a weighted mean 206Pb/238U date of 163.4 ± 1.7 Ma (MSWD = 2.6; 
Fig. 8B, C). The DKT01 analyses show Th and U contents of 5 to 1397 
ppm and 99 to 1477 ppm, with Th/U ratios ranging from 0.04 to 0.95, 
and yield a weighted mean 206Pb/238U date of 158.1 ± 1.5 Ma (MSWD 
= 0.8; Fig. 8D, E). The small spread along concordia in both samples 
DS01 and DKT01 may indicate minor Pb loss associated with hydro-
thermal alteration. Several crystals from sample DKT01 have CL-dark 
rim overgrowths. They have high Th and U contents of 415 to 1491 
ppm and 891 to 3175 ppm and yield apparently young 206Pb/238U date 
of 130–121 Ma (Fig. 8D). These results are close with the gold miner-
alization events that occurred at ca. 120 Ma (Qiu et al., 2020a), sug-
gesting that these zircon overgrowths were contemporaneous with 
mineralization. Some grains have rounded margins or occur as cores 
surrounded by magmatic rims, suggesting that they were inherited from 
the melt source or captured by the rising magma (Fig. 8A). The ages of 
the inherited zircon show peaks of Paleoproterozoic, Neoproterozoic, 
and Late Triassic to Early Jurassic age (Fig. 8A). 

5.2. Apatite morphology, LA–ICP–MS U–Pb dates and composition 

Two types of apatite grains are observed in this study. Type I apatite 
grains separated from the K-feldspar altered Linglong granites (DS01 
and DKT01) are anhedral. They vary from 80 to 200 μm in length, with 
length/width ratios between 1 and 2 (Fig. 9A). The crystals commonly 
show textures indicative of fluid metasomatism under CL imaging. The 
unaltered domains are more homogeneous than the altered domains. 
The altered grains are characterized by pitted surfaces with visible voids 
and mineral inclusions and cracks (Fig. 9A). Thirty U–Pb isotope ana-
lyses from sample DKT01 lie on an unanchored line with a lower 
intercept date of 158 ± 9 Ma (MSWD = 0.65) on Tera-Wasserburg di-
agrams. Thirty-one analyses from sample DS01 yield a lower intercept 
date of 162 ± 13 Ma (MSWD = 1.5) anchored using a 207Pb/206Pb value 
of 0.946 from the Tera-Wasserburg concordia of the sample DKT01 
(supplementary table 2; Fig. 9C, D). All Type I apatite grains are fluo-
rapatite (supplementary table 3). They show low U and Th contents, 

Fig. 5. Field photographs showing the alteration, ore and mineral assemblages at the Dongshan (A) and Dakaitou (B) gold deposits.  

Table 1 
Summary of sample information.  

No. Location Lithology Texture 
of 
apatite 

Age of 
apatite 

Origin of 
apatite 

DS01 Au 51 
orebody; 
206 m level 

K-feldspar 
altered 
granite 

Anhedral 162 ±
13 Ma 

I-type granite 

DS02 Au 51 
orebody; 
206 m level 

Quartz 
vein 

Euhedral 227 ±
3 Ma 

S-type granite 
and high-grade 
metamorphic 
rocks 

DKT01 Au 175–8 
orebody; 
− 620 m 
level 

K-feldspar 
altered 
granite 

Anhedral 158 ±
9 Ma 

I-type granite 

DKT02 Au 175–8 
orebody; 
− 620 m 
level 

Quartz 
vein 

Euhedral 227 ±
4 Ma 

S-type granite 
and high-grade 
metamorphic 
rocks  
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with average Th and U contents of 11 ppm and 15 ppm. They exhibit Sr 
and Y contents ranging from 488 to 633 ppm and 1090 to 2600 ppm, 
with a mean Sr/Y ratio of 0.39. Their light rare earth element (LREE) 
concentrations are 680 to 2323 ppm (supplementary table 4; Fig. 9G). 

Euhedral and pristine Type II apatite grains were observed in the 
hydrothermal quartz vein samples (DS02 and DKT02) (Fig. 9B). They are 
50 to 200 μm in length, with length/width ratios between 2 and 4. Some 
grains show weak oscillatory growth zoning under CL imaging. Type II 
apatite crystals are further divided into two subtypes. The more abun-
dant Type IIa apatite grains are characterized by green to blue colors on 
false-color CL images. The Type IIb apatite grains show bright orange- 
red color on false-color CL images (Fig. 9B). These two subtypes 
define a well-constrained mixing line between the radiogenic and the 
common Pb components. Apatite crystals from samples DS02 and 

DKT02 yield lower intercept dates of 227 ± 3 Ma (MSWD = 2.2, n = 44; 
Fig. 9E) and 227 ± 4 Ma (MSWD = 0.51, n = 57; Fig. 9F) on a Tera- 
Wasserburg diagram. The lower intercept was anchored using a 
207Pb/206Pb value of 0.851 derived from the terrestrial Pb evolution 
model (Stacey and Kramers, 1975). All types IIa and IIb apatite grains 
are fluorapatite (supplementary table 3). The average Th and U contents 
of types IIa and IIb apatite grains are 26 ppm and 19 ppm, and 34 ppm 
and 48 ppm respectively. The Sr contents of types IIa and IIb apatite 
grains are in the range of 31–44 ppm and 117–137 ppm and their Y 
contents vary from 2290 to 4530 ppm and 1230–3800 ppm, with 
average Sr/Y ratios of 0.01 and 0.06, respectively (supplementary table 
4; Fig. 9G). 

Fig. 6. Hand specimen of K-feldspar altered Linglong granite (A) and a hydrothermal quartz vein (B) at Dongshan. Hand specimen of K-feldspar altered Linglong 
granite (C) and a hydrothermal quartz vein (D) at Dakaitou. Kfs = K-feldspar, Py = pyrite, Qz = quartz. Mineral abbreviations refer to Whitney and Evans (2010). 

Fig. 7. Photomicrographs of the K-feldspar altered Linglong granite (A) and hydrothermal quartz vein (B). Ser = sericite.  
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6. Discussion 

6.1. Origins of apatite 

Apatite in this study can be divided into two types based on their 
texture, geochronology, and composition. The anhedral rounded apatite 
(Type I) in K-feldspar altered Linglong granite coexists with biotite, 
amphibole, and plagioclase or K-feldspar and thus is interpreted as a 
magmatic origin (Fig. 9A). They yield lower intercept dates of 162 ± 13 
Ma and 158 ± 9 Ma (Fig. 9C, D), which are consistent with the zircon 
U–Pb dates of 163.4 ± 1.7 Ma and 158.1 ± 1.5 Ma (Fig. 8) obtained from 
the same samples, confirming that the Type I apatite was originally 
primary magmatic (Fig. 10A). The textures of fluid metasomatism in 
Type I apatite reveal extensive metasomatic alteration. Sharp bound-
aries between the unaltered and the altered domains and abundant fluid 
inclusions in the altered domains suggest a dissolution-reprecipitation 
process associated with K-feldspar alteration at 300 to 500 ℃ by fluid 
inclusion thermometry (Zeng et al., 2016; Wang et al., 2020). Although 
the altered domains record the conditions of the metasomatic fluids, 
pervasive micro-porosities and fluid inclusions prevent us from gaining 
robust fluid information using LA–ICP–MS. The support vector machine 

apatite classification biplot shows that the LREEs of Type I apatite from 
Linglong I-type granite are lower than typical I-type granitoids and trend 
toward the low- and medium-grade metamorphic and metasomatic 
fields (O’Sullivan et al., 2020). This indicates that apatite chemical 
composition can be modified by hydrothermal fluids (Zeng et al., 2016; 
Cao et al., 2019). REE-bearing mineral inclusions (e.g., monazite) within 
the altered domains of Type I apatite indicate that the leached REEs and 
Y immediately reprecipitated (Fig. 9A). 

The euhedral and pristine apatite (Type II) only appears in quartz- 
sericite-pyrite vein samples (Fig. 9B), which implies that the Type II 
apatite has no genetic relationship with the host granite. There are two 
possible hypotheses for its origin: hydrothermal or captured. The hy-
drothermal hypothesis is easy to rule out because the ca. 227 Ma crys-
tallization ages of Type II apatite (Fig. 9E, F) are much older than the 
emplacement of the host granite at ca. 160 Ma and the gold minerali-
zation at ca. 120 Ma. As a result, the Type II apatite is interpreted as 
xenocrysts captured from rocks below the Linglong granite by hydro-
thermal quartz veins. The textural, compositional, and geochronological 
evidence acquired during this study, further divided Type II apatite 
grains into two subtypes. The Type IIa apatite originates from S-type 
granites based on the support vector machine apatite classification 

Fig. 8. (A) CL images showing the morphology and internal textures in zircon from the Dongshan and Dakaitou samples. Wetherill concordia plots and weighted 
mean 206Pb/238U ages for zircon U-Pb analyses from the K-feldspar altered Linglong granite at Dongshan (B, C) and Dakaitou (D, E). 
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diagram (Fig. 9G; O’Sullivan and Chew, 2020). Most Type IIb apatite 
crystals plot in the high-grade metamorphic field, indicating that they 
are most likely derived from high-grade metamorphic rocks. U–Pb dates 
of both type IIa and IIb apatite grains at ca. 227 Ma imply that they both 
crystallized in the Late Triassic. This is also consistent with the abundant 
Late Triassic magmatic and metamorphic zircon xenocrysts in the 
Linglong granite (Huang et al., 2014). 

6.2. Nature and location of the apatite xenocryst sources 

The Late Triassic has been recognized as a critical period for East 
China, during which the North China and South China blocks collided 
followed the initiation of lithospheric thinning of North China block 
might begin (Li et al., 2019; Qiu et al., 2021a). The Late Triassic apatite 
xenocrysts therefore could derive from (1) collision between North 
China and South China blocks and/or (2) lithospheric thinning of North 
China block. Late Triassic rocks are not exposed in the Jiaobei terrane 
but exposed in the Liaodong Peninsula, the Sulu terrane, the Dabie 
orogen, and the Qinling orogen (Fig. 1; Qiu et al., 2020b). The Late 
Triassic intrusive rocks emplaced at ca. 220–211 Ma at Liaodong 
Peninsula were considered to be related to lithospheric thinning of 
North China block (Duan et al., 2014; Quan et al., 2020). Geochemical 
characteristics indicate that they are mainly composed of I–type and 
A–type granitoids and mafic dikes (Quan et al., 2020). This contradicts 
our apatite results, indicating that the apatite xenocrysts are unlikely to 

be related to the lithospheric thinning of North China block. Late 
Triassic alkaline complex emplaced at 213–210 Ma crops out along the 
far southeastern edge of the Jiaodong Peninsula (Xu et al., 2016). They 
belong to the A2-type granites contemporaneously with exhumation 
following continental collision (Zhao et al., 2017), which is ruled out the 
possibility of the apatite source. The Sulu-Dabie area is one of the largest 
and best-exposed UHP metamorphic belts in the world. Zircon and 
titanite U–Pb dating showed that the partial melting process of UHP 
rocks had two major episodes at ca. 230–224 Ma and 220–215 Ma (Zhao 
et al., 2020). In addition, Late Triassic (ca. 210 Ma) S-type granites 
related to Late Triassic collisional orogeny between North China and 
South China blocks crop out in the Qinling orogen (Yang et al., 2015; Lu 
et al., 2016). As a result, although the Late Triassic S-type granites or 
high-grade metamorphic rocks are not exposed in the Jiaobei terrane, 
the apatite xenocrysts most likely originate from buried rocks in the 
Jiaobei terrane associated with the collision between North China and 
South China blocks (Fig. 10A). 

As discussed above, the apatite grains were xenocrysts in origin 
captured in auriferous quartz vein. This suggests that the ore-forming 
fluids and the apatite sources shared a same path at depth. The 
Potouqing fault controls the gold mineralization at Linglong goldfield 
(Figs. 3, 10) and therefore is considered as the path of the ore-forming 
fluids with apatite xenocrysts. This means that the apatite source was 
below the Linglong granite and the temperature was below the closure 
temperature of the apatite U–Pb system at ca. 120 Ma. The Pb diffusion 

Fig. 9. Photomicrographs and diagrams showing apatite internal textures, U-Pb age data and trace element composition. (A) Type I apatite in K-feldspar altered 
Linglong granite, showing textures consist with metasomatism. (B) Type II apatite in hydrothermal quartz veins with two subtypes. (C) Tera-Wasserburg concordia 
plots for U-Pb analyses of Type I apatite. (D) Tera-Wasserburg concordia plots for U-Pb analyses of Type II apatite. (E) Apatites plotted on a support vector machine 
apatite classification diagram (Sr/Y vs LREE [La, Ce, Pr, Nd]) (after O’Sullivan and Chew, 2020). ALK = alkaline-rich igneous, HM = high-grade metamorphic, IM =
I-type granitoids and mafic igneous, LM = low- and medium-grade metamorphic and metasomatic, S = S-type granites, UM = ultramafic igneous. Amp = amphibole, 
Ap = apatite, Mnz = monazite, Zrn = zircon. Mineral abbreviations refer to Whitney and Evans (2010). 
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parameters were controlled by effective diffusive radius and cooling rate 
(Dodson, 1973; Cherniak et al., 1991). The apatite xenocrysts are typi-
cally 100 μm in size (Fig. 9). Yang et al. (2016) and Zhang et al. (2020a, 
b) calculated the cooling rate at Jiaobei terrane as 2–5 ◦C/Ma. The 
apatite U–Pb closure temperature is thus estimated at c. 460 ± 10 ◦C 
(Chamberlain and Bowring, 2000). The surface temperature at Jiaodong 
has been estimated at c. 20 ◦C by Zhang et al. (2020a) and Sai et al. 
(2020). The peak of lithospheric thinning of North China block occurred 
at the Early Cretaceous and resulted in a significant high geothermal 
gradient (Qiu et al., 2014; Ren et al., 2020). A paleogeothermal gradient 
of 40 ± 5 ◦C/km was calculated by Qiu et al. (2014) and Ren et al. 
(2020) using vitrinite reflectance and apatite fission track. Previous fluid 
inclusion work at Jiaodong showed that the temperature of the ore- 
forming fluids remains nearly the same over vertical depth interval 
(Hu et al., 2013; Wen et al., 2016). This indicates that the hydrothermal 
fluids have little heating effect on the wall rock. As a result, the apatite 
xenocryst source was no more than c. 11 ± 1 km under the paleo-surface 
at ca. 120 Ma. Based on ductile shear deformation in the Linglong 
granite, Dou et al. (2018) proposed that the depth of Linglong granite 
was ~10–15 km. This rules out the possibility that the apatite xenocryst 
source was in the footwall of the Potouqing fault, as the apatite U–Pb 
system would likely have been reset. As a result, the apatite xenocryst 

source was likely located in the hanging wall of the Potouqing fault 
system (Fig. 10A, B). 

6.3. Implications on vertical distribution of ores at Jiaodong 

Thousands of tons of gold resources at Jiaodong are controlled by 
NE- to NNE-trending faults and are hosted in the Mesozoic granitoids in 
the footwall of the faults (Deng et al., 2020a; Qiu et al., 2020a). Low 
temperature thermochronology indicates that the Jiaodong gold de-
posits are partially eroded but relatively well preserved, with great gold 
endowment potential (Liu et al., 2017; Zhang et al., 2020a). Exploration 
for potentially deep orebodies in the footwall is being undertaken by 
drilling of increasingly deep drill holes. Compared to the Type I apatite 
crystals, most of which are altered by the hydrothermal fluids, no altered 
Type II apatite grains are observed. This result suggests that the apatite 
xenocryst source beneath the Linglong granite is unaltered and thus gold 
mineralization in the footwall did not exceed c. 11 ± 1 km depth under 
the paleo-surface at ca. 120 Ma (Fig. 10C). Gold mineralization in 
Linglong likely occurred at a depth of c. 7 km (Guo et al., 2020). The 
apatite xenocryst source was therefore estimated at less than c. 4 ± 1 km 
beneath the sampled Linglong granite, marking that gold mineralization 
in the footwall at Linglong didn’t exceed 4 ± 1 km vertically (Fig. 10C). 

7. Conclusion 

Two types of apatite are observed in hydrothermal quartz veins and 
their host granites which have undergone K-feldspar alteration in the 
giant Jiaodong gold province. Type I apatite crystals in the altered 
granite are magmatic in origin. Their metasomatism textures and 
decrease in REEs and Y indicated dissolution-reprecipitation processes 
during K-feldspar alteration. Type II apatite crystals are only observed in 
hydrothermal quartz veins. They are derived from Late Triassic S-type 
granites and Late Triassic high-grade metamorphic rocks which are 
likely related to the Late Triassic collision between North China and 
South China blocks. The Type II apatite crystals are thus likely xen-
ocrysts derived from unaltered Late Triassic S-type granites and Late 
Triassic high-grade metamorphic rocks beneath the exposed granite. 
The apatite xenocryst source in the hanging wall of the Potouqing 
normal fault was less than 4 ± 1 km below the Linglong granite at 120 
Ma as estimated by the closure temperature of apatite U–Pb system and 
the paleogeothermal gradient. The unaltered buried rocks mark that 
gold mineralization in the footwall at Linglong didn’t exceed 4 ± 1 km 
vertically. This study demonstrates that apatite xenocrysts captured by 
hydrothermal vein represent a powerful tool for determining buried 
rocks underground by integrating texture, geochronology, and 
geochemistry. 
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Fig. 10. Schematic cross sections illustrating the relative spatial relationship of 
the Linglong granite and geology at depth (modified from Yang et al., 2016). 
(A) Linglong granites emplaced at ca. 160 Ma; (B) Cooling and exhumation of 
the Linglong granites from ca. 160–120 Ma; (C) Hydrothermal quartz veins 
captured apatite xenocrysts at ca. 120 Ma. 
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