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ABSTRACT

Continental intraplate basalts are widespread across Central-East Asia, and their melting mechanisms are poorly
known. Herein, we present integrated studies of petrology, elemental-isotope systematics, and thermodynamic
modeling of Cenozoic Liangcheng basalts, a representative volcanic field of the vast intracontinental basaltic
magmatic province covering Central-East Asia, with the aim of constraining the source characteristics and
melting dynamics in this intraplate setting. These basalts have moderate-to-low silica (45.2 to 49.0 wt%), high
Fe,03T (10.0 to 12.2 wt%), and alkali (NasO + K»0, 4.27 to 7.38 wt%) contents with ocean-island basalt (OIB)
-like trace-element patterns and moderately depleted to slightly enriched Sr-Nd-Pb-Hf isotopes (¥7Sr/%°sr =
0.703924-0.705176, *3Nd/1*Nd = 0.512540-0.512861, 2°°Pb/2%%pb = 17.2752-17.9180, 297Pb/2%%pph =
15.4860-15.7383, 2°%Pb/20*pb = 37.6995-38.3599, and 7CHf/'77Hf = 0.282852-0.282999). The major ele-
ments (e.g., high Fe/Mn, low CaO) and olivine chemistry (e.g., high Ni, Zn/Fe, and low Mn/Zn) favor derivation
from a silica-deficient pyroxenite-bearing source, while the trace-element and isotope systematics suggest the
involvement of recycled components including oceanic slab and sediment (both terrigenous and pelagic). A grid
search with a thermodynamic melting model using incompatible trace elements was carried out to impose
quantitative constraints on the mantle source. The modeling results show that the source of the Liangcheng basalt
contains 80% primitive mantle peridotite and 20% silica-deficient pyroxenite. This exercise and geobarometric
calculation using major elements suggest that melting occurs at a potential temperature of 1380 °C underneath a
thinned continental lithosphere with a basal pressure of ~2GPa, consistent with the source characteristics and
melting conditions estimated for many other volcanic fields in the vast Central-East Asia magmatic province. By
combining these results with the regional geology and tectonic history, we can suggest that these basalts were
formed by decompression melting owing to mantle convection driven by lithospheric thickness variations (edge-
driven convection). We suggest that such a melting scenario is ubiquitous beneath Central-East Asia and may
have played a vital role in the formation of widespread intraplate continental alkaline basalts.

1. Introduction

plumes (McGee and Smith, 2016). The origin of this intraplate volca-
nism remains unclear. The proposed models include: 1) splash plume

Intraplate volcanism distributed far from plate boundaries is
important for understanding the geodynamic processes of Earth’s
mantle (King and Ritsema, 2000; Sobolev et al., 2005; Hoernle et al.,
2006; Conrad et al., 2011; Ballmer et al., 2013; Wang et al., 2015). While
high-volume (>10° km®) magmatism is usually fed by mantle plumes
(Bryan and Ernst, 2008), some small-volume diffusive magmatism
shows no obvious connection with plate-boundary processes or mantle
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triggered by cold downwelling material (Davies and Bunge, 2006); 2)
passive upwelling caused by lithospheric thinning or rifting (Hoernle
et al., 2006); 3) shear-driven upwelling related to relative motion be-
tween the lithosphere and asthenosphere (Conrad et al., 2011); 4) plate
subduction-induced mantle upwelling (Kuritani et al., 2011); 5) edge-
driven convection due to steps in lithospheric structure/thickness
combined with plate movement (King and Ritsema, 2000).
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The Central-East Asia continent became a coherent landmass after a
series of Phanerozoic subduction and/or collision episodes, and it has
witnessed widespread basaltic magmatism during the Cenozoic
(Fig. 1A). P-wave tomography has revealed a stagnant subducted (Paleo-
) Pacific plate in the mantle transition zone (Huang and Zhao, 2006),
and the mantle domain above the plate is called the Big Mantle Wedge
(BMW) (Zhao et al., 2004). Cenozoic basalts within the structure of the
BMW span a wide composition range from extremely silica-deficient
nephelinite to silica-excess quartz tholeiite (Xu et al., 2018). Litholog-
ical heterogeneous mantle sources containing garnet pyroxenite, eclo-
gite, carbonated eclogite, and carbonated peridotite have been
introduced to explain compositional variations (Liu et al., 2008a; Zeng
et al., 2010, 2011, 2021; Huang et al., 2015; Li et al., 2017; Wang et al.,
2017; He et al., 2019a; Yu et al., 2019; Xu et al., 2022; Zou et al., 2022).
The melting of such lithological heterogeneities is generally interpreted
to be related to the stagnant (Paleo-) Pacific slab in the mantle transition
zone because of the spatial-temporal coincidence between the subducted
slab and basalts (Figs. 1A, B; Chen et al., 2017; Xu et al., 2018; Cai et al.,
2022), with some exceptions in which the melting is driven by small-
scale convection due to lithospheric thickness variations (Guo et al.,
2020; Sun et al., 2020; Xu et al., 2022). Cenozoic basalts beyond the
BMW display geochemical compositions similar to their counterparts,
and lithological heterogeneities have also been inferred from the source
(He et al., 2019b; Pang et al., 2019; Sheldrick et al., 2020a; Zhang et al.,
2021; Liu et al., 2022). However, unlike those within the BMW, basalts
beyond the BMW are spatiotemporally far from any active margins
(converge or disperse) (Windley et al., 2010; Xiao et al., 2015) and their
melting mechanism remains hotly debated. Existing explanations
include: 1) localized asthenospheric upwelling owing to lithospheric
rifting or delamination (Barry et al., 2003; Hunt et al., 2012); 2) large-
scale convection related to mantle plume (Johnson et al., 2005); 3)
direct mantle melting triggered by coeval subduction/convergent pro-
cesses, that is, subduction of the Pacific plate and/or India-Eurasia
collision (Li et al., 2018; Chen and Faccenda, 2019). The above de-
bates are largely owing to the lack of constraints on the thermal-
chemical conditions of the lithologically heterogeneous mantle source,
which are crucial for understanding the origin and melting mechanism
of these intracontinental basalts.

Herein, we chose to study the Liangcheng basalts, which are far from
the front edge of the stagnant Pacific slab (> 500 km) (Fig. 1B), to
explore the mantle source characteristics and melting mechanisms of
continental intraplate basalts. We present an integrated study on min-
eral chemistry, whole-rock geochemistry, Sr-Nd-Pb-Hf isotope com-
positions, and thermodynamic modeling to constrain their source
characteristics and melting conditions. Our study reveals that these
basalts originate from a silica-deficient pyroxenite-bearing mantle
source with a low final melting pressure (~2 GPa) that corresponds to a
thin lithosphere (< 70 km), which is consistent with most alkaline ba-
salts in the studied and nearby regions. Our results, together with pub-
lished geochemical data, geophysical observations, and regional
geological history, suggest that decompression melting due to mantle
convection driven by lithospheric thickness variations (edge-driven
convection) may have played an important role in the formation of the
Liangcheng basalts as well as many other Cenozoic intracontinental
alkaline basalts across Central-East Asia.

2. Geological background and sample description

The Central-East Asia continent is composed of three cratons,
including the Siberian Craton in the north, the North China Craton
(NCCQ) in the middle, and the South China Craton in the south (Fig. 1A).
Their assembly is marked by three major tectonic events, including the
closure of the Paleo-Tethys Ocean between the South China Craton and
the NCC before 200 Ma (Wu et al., 2009), the closure of the Paleo-Asian
Ocean along the Solonker suture zone at 260-230 Ma (Wan et al., 2018;
Jing et al., 2022), and the closure of the Mongol-Okhotsk Ocean along
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the Mongol-Okhotsk suture zone at 155-120 Ma (Kravchinsky et al.,
2002; Van der Voo et al., 2015). After these tectonic events, the three
cratons were bounded by two complex orogenic belts, namely the
Central Asia Orogenic Belt between the NCC and the Siberia Craton and
the Qinling-Dabie-Sulu Ultra-High Pressure Orogenic Belt between the
NCC and the South China Craton (Fig. 1A).

The subduction of the (Paleo-) Pacific slab that started at ~180 Ma
has led to the development of N-NE trending faulting and rifting sys-
tems, vast magmatism, and large-scale graben basins, as well as the
formation of the North-South gravity lineament (NSGL) in East Asia (Ma
and Xu, 2021 and references therein). Cenozoic basaltic magmatism in
East Asia mainly occurred along the N-NE trending deep major faults (e.
g., the Tan-Lu fault in the eastern NCC and Yilan-Yitong and Fushun-
Mishan faults in NE China, Fig. 1A) or around the graben basins (e.g.,
Songliao Basin, Fig. 1A). In contrast, Central Asia (areas west of the
NSGL) remains an intracontinental setting since the closure of the
Mongol-Okhotsk Ocean during the Late Mesozoic to Early Cretaceous
(Van der Voo et al., 2015; Sheldrick et al., 2020b) and is now away from
the western leading edge of the Pacific slab, as revealed by the P-wave
images (Huang and Zhao, 2006). The lithospheric thickness of Central
Asia shows significant variations, as illustrated by geophysical obser-
vations and Mesozoic-Cenozoic basalt-born mantle xenoliths (Ionov,
2002; Chen et al., 2009a; Dai et al., 2020). The ancient blocks (Ordos,
Gobi, and Siberia) are generally thick (> 200 km), whereas the segments
between these ancient blocks commonly have a thin lithosphere, and
Cenozoic basaltic magmatism is preferentially spread in regions with
thin lithosphere (Fig. 1A).

The Liangcheng volcanic field belongs to the western part of NCC and
locates at the joint of the Yinchuan-Hetao basin and the Shaanxi-Shanxi
rift system (Fig. 1A) and has a wide distribution area of 1500 km? (Li and
Li, 2003). It is underlain by thin (<100 km) and fertile lithospheric
mantle, as evidenced by garnet-free lherzolite xenoliths in Cenozoic
basalts (Zhang et al., 2012; Zhao et al., 2021) and seismic tomography
(Chen et al., 2009a; Huang et al., 2009). Lithospheric thinning was
proposed to have occurred at some point during the Early Cretaceous
and Cenozoic, based on the compositional variation of regional basalts
(Guo et al., 2014). The Neogene basalts are interbedded with several
layers of sedimentary rocks (coal, mudstone, sandstone, and volcanic
breccia), and unconformably underlain by the Archean TTGs and
Jurassic-Cretaceous sandstone, shale, and tuff breccia, and overlain by
Quaternary loess and sandstone (Fig. 2). These basalts occur either as
volcanic cones or as lava flows with typical columnar jointing (Fig. S1)
and the thickness of volcanic strata is basically >200 m and can up to
300 m in the southeast of the volcanic field. Whole-rock K-Ar dating of
this volcanic field yields ages ranging from Oligocene to Miocene
(24-15 Ma; Li and Li, 2003).

Thirty samples from 13 volcanic cones and three lava flow fields
were collected, and only fresh samples without mineral cumulates were
selected to be analyzed to obtain geochemical data. These rocks show a
dark-grey colour with a massive structure and aphyric or porphyritic
texture. The phenocrysts are dominated by olivine, with minor clino-
pyroxene. Olivine phenocrysts are euhedral to subhedral with embayed
absorption shapes and vary in size from 0.5 mm to 2 mm, with a total
amount of 5 vol%. Cracks developed, but no deformation structures
were observed in the olivine grains (Fig. S1). Clinopyroxenes are
anhedral and irregular in shape with a size of 0.5-1 mm and 1 vol% in
volume (Fig. S1). The groundmass consists of olivine, clinopyroxene,
plagioclase, Fe-Ti oxide microcrystals, and glass. No obvious petro-
graphic evidence of magma mixing or mingling (e.g., complex zoning)
was observed in these samples.

3. Analytical methods
3.1. In-situ mineral chemistry analyses

In-situ mineral (olivine, clinopyroxene, and feldspar) major-element
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Fig. 1. (A) Topography map of Central-East Asia and distribution of late Cenozoic intraplate volcanic province; the distribution patterns of major faults, basins, and
magmatism are according to Wang et al. (2015), He et al. (2019b) and Yu et al. (2019). (B) Seismic tomography image of the deeply subducted Pacific slab and
structure of big mantle wedge (after Huang and Zhao, 2006). F1, Xinlin-Xiguitu fault; F2, Hegenshan-Heihe fault; F3, Solonker-Xar Moron-Changchun-Yanji suture;
F4, Chifeng-Kaiyuan fault; F5, Yitong-Yilan fault; F6, Jiamusi fault; F7, Dunhua-Mishan fault; F8, Tan-Lu fault; F9, Jiang-Shao fault; F10, Songxi-Changting, Zhenghe-
Dapu, and Changle-Nan’ao faults. B1, Songliao basin; B2, Hailarr basin; B3, Tamsag basin; B4, Erlian basin; B5, East Gobi basin; B6, Yin’gen basin; B7, Yinchuan-

Hetao basin; B8, Shaanxi-Shanxi rift system.
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Fig. 2. Regional geological map of the Liangcheng volcanic field.

compositions were determined on carbon-coated polished sections using
JXA-8100 electron microprobe at the Key Laboratory of Submarine
Geosciences, Second Institute of Oceanography, Ministry of Natural
Administration. The analyses were performed with an accelerating
voltage of 15 kV, a 20 nA current, and beam diameters of 1-5 pm. Data
were corrected using a modified ZAF (atomic number, absorption,
fluorescence) correction procedure. Calibration standards were olivine
(Mg), rutile (Ti), pyrope (Al), Cro03 (Cr), hematite (Fe), MnyO3 (Mn),
diopside (Si, Ca), jadeite (Na), and NiO (Ni). Peak counting times were
20 s and background counting times were 10 s on each side of the peaks.
Internal standards (SPI olivine and diopside) were analyzed as unknown
before the analyses, and the SPI olivine was also used as a secondary
standard to check the olivine data accuracy. Analysis precision for
measured contents >10% and > 0.5% are generally better than 1% and
5%, respectively, and for elements with contents <0.5 wt%, the preci-
sion may be less than 10%. The poor accuracy for elements with low

concentrations is attributed to the instrument’s precision and inappro-
priate experimental conditions (low electric current and/or short signal
acquisition time) (Lambart et al., 2022). In-situ trace-element analysis
for the olivine grains was conducted using a 193 nm RESOlution S-155
laser-ablation system coupled to a Thermo iCAP RQ inductively coupled
plasma mass spectrometer (LA-ICP-MS) at the State Key Laboratory of
Geological Processes and Mineral Resources (GPMR), China University
of Geosciences, Wuhan. The analyzed samples were ablated using a 40
pm spot size, 10 Hz repetition rate, and 4 J/cm? corresponding energy
density. Helium gas (~400 ml/min) carrying the ablated sample aerosol
was mixed with Argon gas (~800 ml/min) and a small amount of Ni-
trogen gas (~4 ml/min) as an additional diatomic gas to enhance
sensitivity, before flowing into the ICP-MS. Repeated analyses of the
USGS standards (BIR-1G, BHVO-2G, and BCR-2G) indicate precision and
accuracy are both better than 10% for most analyzed elements. The
measured trace elements were: Li, P, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn.
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The NIST glasses were used for correcting the signal drift. The isotope
29Si was used as the internal standard in conjunction with the Si con-
centrations determined previously by EPMA. ICPMSDataCal software
(Liu et al., 2010) was used for the off-line data selection, integration of
background and analyte signals, time-drift correction, and quantitative
calibration. Data for olivine, clinopyroxene, and feldspar can be found in
Table S1.

3.2. Whole-rock geochemical analyses

Whole-rock major-element compositions were determined by the
traditional X-ray fluorescence (XRF) method using a Shimadzu
Sequential 1800 spectrometer at GPMR. The detailed procedures were
described by Ma et al. (2012). According to the measured values of
standard (GBW07105), the analytical uncertainties for most elements
are generally less than 5%. Bulk rock trace-element compositions were
acquired using an Agilent 7700e ICP-MS after acid digestion of the
samples in high-pressure Teflon bombs at Wuhan SampleSolution
Analytical Technology Co., Ltd., (WSSAT). Sample powder (200 mesh)
was placed in an oven at 105 °C for drying of 12 h. Then, 50 mg sample
powder was weighed and placed in a Teflon bomb, and 1.5 ml of HNO3
and 1.5 ml of HF were added to the bomb, which was sealed in a steel
jacket and heated to 190 °C in the oven for 48 h to completely dissolve
the sample. After cooling, the Teflon bomb was opened and placed on a
hotplate at 140 °C and evaporated to incipient dryness, and the 1 ml
HNO3; was added and evaporated to a second round of dryness. The
resultant salt was redissolved by 1 ml of HNO3, 1 ml of Milli-Q water,
and 1 ml internal standard solution of 1 ppm In, and the Teflon bomb
was resealed and placed in the oven at 190 °C for >12 h. The final so-
lution was diluted to 100 g with a mixture of 2% HNOj3 for ICP-MS
analysis. Analyses of four international standards (AGV-2, BHVO-2,
BCR-2, and RGM-2) indicate that the analytical uncertainties for most
trace elements are generally less than 5%. The detailed sample digestion
procedure and the analytical precision and accuracy during ICP-MS
analyses were the same as those described in Liu et al. (2008b).
Whole-rock major and trace element data for samples and standards are
listed in Table S2.

3.3. Sr-Nd-Pb-Hf isotopic analyses

Nine samples were selected for whole-rock Sr-Nd-Pb-Hf isotope
analysis at the WSSAT. For the Sr-Nd isotopic analysis, approximately
200 mg of the sample powder was completely dissolved in HF-HCIO4 at
200 °C for one week. Sr and Nd were separated using conventional ion-
exchange columns, and Nd fractions were further separated using
HDEHP columns. The procedural blanks were 200 pg for Sr and 30 pg for
Nd. The measured 8Sr/%%sr and 1*3Nd/***Nd ratios were normalized to
88gr/86gr — 8.3752 and '*°Nd/!**Nd = 0.7219, respectively. The
measured values for the NBS987 standard yielded ¥7Sr/%%Sr = 0.710243
+ 0.000010 (2SE, n = 4), and the GSB 04-3258-2015 standard yielded
143Nd/*4Nd = 0.512441 + 0.000006 (2SE, n = 4). The USGS reference
materials BCR-2 and RGM-2 gave results of 0.704999 + 0.000007 (2SE,
n=1) and 0.704143 + 0.000008 (2SE, n = 1), respectively, for ’Sr/%sr
and 0.512640 + 0.000006 (2SE, n = 1) and 0.512793 + 0.000006 (2SE,
n = 1), respectively, for 143Nd/14Nd. These values are identical, within
error of 0.03% of their recommended values (Thirlwall, 1991; Weis
et al., 2006; Li et al., 2012, 2016a).

For Pb isotopic determination, the whole rock powder was dissolved
in Teflon vials with purified HF + HNO3 at 190 °C for >24 h and then
separated using anion-exchange columns with diluted HBr and HCI as
eluents. The procedural blank for Pb was 50 pg. Isotopic ratios were also
determined using the Neptune Plus MC-ICP-MS. Repeated analyses of Pb
isotopes for standard NBS981 yielded 2°®pb/2%*Pb = 36.727 + 0.002,
207pp2%4ph = 15.500 + 0.001, and 2°°Pb/2**Pb = 16.942 + 0.001
(2SE, n = 3). For the in-house Alfa Pb standard the values were
208pp,209ph = 37.851 + 0.002, 2*’Pb/?**Pb = 15.597 + 0.001, and
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206pp,/204ph = 17.917 + 0.001 (2SE, n = 3). The USGS reference ma-
terials BCR-2 yielded results of 2%8pb/2%%pb = 38.741 + 0.001,
207pp/204ph = 15.627 + 0.000, and 2°°Pb/2°Pb = 18.758 + 0.001
(2SE, n = 1), and the RGM-2 yielded results of 208py, /204ph, — 38,647 +
0.002, 27Pb/2%4pb = 15.621 + 0.001, and 2°°Pb/2%*Pb — 18.933 +
0.001 (2SE, n = 1). The measured standards and references were iden-
tical within the error of the recommended values (Baker et al., 2004;
Weis et al., 2006).

For Hf isotopic analysis, approximately 200 mg of the powder was
digested in Teflon bombs with a mixture of concentrated HNO3 + HF
and dried on a hot plate. This was followed by the addition of concen-
trated HNO3, HF, and HClO4 sealed in bombs and kept in an oven at
190 °C. After cooling, the Teflon bomb was opened, and 1 ml HNO3 was
added and evaporated to dryness. A modified ion-exchange single-col-
umn LN-Spec resin was used for Hf separation. The procedural blank for
Hf was 50 pg. Mass discrimination correction was performed via internal
normalization to a '7°Hf/}”7Hf ratio of 0.7325. The in-house AlfaHf
standard measured during analysis gave an average '”°Hf/!”7Hf ratio of
0.282224 4+ 0.000006 (2SE, n = 5), and the reference materials BCR-2
and RGM-2 yielded 7®Hf/'77Hf ratios of 0.282855 = 0.000007 (2SE,
n =1) and 0.283010 + 0.000007 (2SE, n = 1), respectively, which are
within the range of the recommended values (Weis et al., 2007; Chen
et al., 2013). The whole-rock Sr—Nd-Pb-Hf isotopic data are shown in
Table 1.

4. Results

The olivine grains have forsterite contents [Fo = 100*Mg/(Mg + Fe)]
varying from 64.7 to 86.5 (Fig. S2), and most of them are in equilibrium
with the whole rock, assuming the Fe-Mg partition coefficient (Kp =
0.30 + 0.03) between olivine and melt (Fig. S2; Roeder and Emislie,
1970). Their CaO contents (0.1-0.26 wt%, Table S1) were slightly
higher than those of typical mantle olivine (CaO < 0.1 wt%; Foley et al.,
2013), together with the euhedral and subhedral crystal shapes, sug-
gesting that they were precipitated from magmas instead of being xen-
ocrysts. In addition, they have high Ni (0.07-0.40 wt%, corresponding
to 534-3104 ppm) and Zn (99-244 ppm) and varied Mn (0.10-0.26 wt
%, corresponding to 767-1990 ppm) concentrations with 100*Mn/Fe
ratios of 0.53-1.85 and 10,000*Zn/Fe ratios of 9.15-17.6. It should be
noted that except for the Ni concentrations, other trace elements (e.g.,
Ca, Mn) of olivine presented here are acquired through LA-ICP-MS as
these elements have concentrations that are too low to have acceptable
precision by EPMA (uncertainty >10%) when measured by routine
analysis (see section 3), which is also suggested by the poor correlations
between data from EPMA and LA-ICP-MS (Fig. S3). Clinopyroxenes are
mainly diopside (Wo3zg_4gEna;_39Fsg_18CaTsg 21) (Fig. S2) and have TiO,
contents of 0.20-3.21 wt%, Al,O3 contents of 3.41-9.89 wt%, and Mg#
values of 47.7-70.8. The compositions of feldspar vary from andesine to
labradorite (Ansg ¢5) (Fig. S2).

The Liangcheng basalts have SiO, contents of 45.2 to 49.0 wt%, and
high contents of alkali elements (KoO + NayO) (4.27-7.38 wt%) and
belong to the alkaline series (Fig. 3A). These rocks display various MgO
contents (5.69-9.54 wt%), low CaO (6.70-9.36 wt%) and MnO
(0.12-0.16 wt%), and high Fe,OsT (10.1-12.2 wt%) contents with
correspondingly high Fe/Mn ratios (59.2-81.1). The TiO (1.77-2.43 wt
%), FexO3T, and MnO contents are nearly invariant with decreasing
MgO contents. The CaO/Al;03 ratios positively correlate with the MgO
contents for samples with MgO < 8 wt%, but show no obvious corre-
lation for those with MgO > 8 wt% (Fig. 3B). The Liangcheng basalts
display ocean-island basalt (OIB) -type trace-element patterns, which
are, enriched in large ion lithophile elements (LILEs) and light rare earth
elements (LREEs) with positive anomalies in Nb, Ta, Sr, Ba, and negative
anomalies in Th, and Pb (Fig. 4). These samples show radiogenic Sr
isotopes (87Sr/865r = 0.703924-0.705688) and moderately depleted to
slightly enriched Nd-Hf isotopes (***Nd/***Nd = 0.512539-0.512861,
1761£/177HE = 0.282824-0.282999), with positive correlations in the
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Fig. 3. (A) Total alkali (Na;O + K,0) vs. SiO, contents (Le Bas et al., 1986); CaO/Al,03 ratios (B), Sc concentrations (C), and Ni concentrations vs. MgO contents (D).

contents (e.g., CaO contents, Herzberg, 2011) and ratios (Fe/Mn, Zn/Fe,
FC3MS, FCKANTMS, Liu et al., 2008a; Le Roux et al., 2010; Yang and
Zhou, 2013; Yang et al., 2019) have been proposed as useful tools to
discriminate the source lithology of basalts. The olivine phenocrysts of
the Liangcheng basalts display high Ni concentrations, and low Mn and
Ca concentrations that are similar to olivine from typical pyroxenite-
derived basalts, such as those from Koolau and Loihi, suggesting crys-
tallization from pyroxenite melts (Figs. 6A, B, C; Sobolev et al., 2005;
Herzberg, 2011; Foley et al., 2013; Shi et al., 2022). However, recent
experimental studies showed that Ni and Mn partition coefficients be-
tween olivine and melt are related to pressure and temperature condi-
tions, which may cause Ni enrichment and Mn depletion in melt derived
from high-pressure melting of a peridotite source (Matzen et al., 2017).
This weakness can be improved by using additional indexes such as
transition elements and their ratios (Mn, Zn, Fe, Zn/Fe, Mn/Zn, and Mn/
Fe; Howarth and Harris, 2017). The Zn/Fe, Mn/Zn, and Mn/Fe ratios for
olivine grains of Fo > 80 from Liangcheng basalts straddle from the field
of pyroxenite-peridotite mixed to pyroxenite source, suggesting a
pyroxenite-bearing mantle source lithology (Figs. 6D, E, F). In addition,
the whole-rock TiO, and MnO contents of Liangcheng basalts show little
variation during magma evolution and thus can be used to discriminate
the source lithology via comparison with experimental data (Table S2).
The studied basalts are characterized by high TiO5 contents and all fall
into the field of pyroxenite (both silica-excess and silica-deficient) melts
(Fig. 7A). Besides that, a whole-rock major composition-based indicator
of FC3MS (FeO/Ca0-3Mg0O/SiO,) proposed by Yang and Zhou (2013)

has been suggested as useful to discriminate the source lithology of
basalt. Yang and Zhou (2013) compiled experimental and natural data
of peridotite and pyroxenite melts and suggested that the upper limit of
FC3MS value for peridotite melts is 0.65, and higher FC3MS value for
peridotite melts can only be reached by substantial clinopyroxene
fractionation (> 30%), which is unrealistic for the Liangcheng basalts
with high MgO contents (> 8 wt%) because they only experienced
olivine fractionation. Therefore, the high FC3MS values (0.49-0.77) of
the Liangcheng basalts may suggest contributions from pyroxenite melts
(Fig. 7B). In addition, the recently proposed parameter, FCKANTMS (In
(FeO/Ca0)-0.08*In(K20/Al503)-0.052*1n(TiO2/Na30)-0.036*In(Na0/
KZO)*ln(NaZO/TiOZ)—0.062*(ln(MgO/SiOz))370.641*(ln(MgO/
SiOz))Z—l.871*1n(MgO/Si02)-1.473) is also a useful index in discrimi-
nating the source lithology of basalt, and olivine fractionation only
causes limited variation (0-0.15) of this value (Yang et al., 2019). The
Liangcheng basalts have much higher FCKANTMS (0.42-0.64) than
those for peridotite melts (< 0.1) as shown in Figs. 7C, D, also indicating
a major contribution from pyroxenite melting. The above evidence
collectively suggests a pyroxenite-bearing mantle source lithology for
the Liangcheng basalts.

Discriminating the nature of the pyroxenite is of great importance
before we gain knowledge about the melting conditions because
different types of pyroxenite may have various mineral modes, phase
relations, and melting behavior (Lambart et al., 2016). The nature of
pyroxenite could be identified using whole-rock compositions since
different types of pyroxenites (silica-deficient and silica-excess) would
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generate melts with contrasting compositions (Lambart et al., 2013).
Here, we adopted a pseudo-ternary sub-projection consisting of a whole
array of major elements to provide insights into the nature of the py-
roxenite in the source of the studied basalts (Fig. 8). It clearly shows that
the Liangcheng basalts with high MgO contents (> 8 wt%) are deficient
in SiO, and similar to experimental melts of silica-deficient pyroxenite,
and addition of olivine (to recover the primary melt composition) would
not drive these basalts into fields of silica-excess pyroxenite melts.
Although experiments proposed that reacted melts between MORB-
eclogite (silica-excess pyroxenite) partial melts and fertile peridotite
could generate basalts with low silica and high alkali that are similar to
natural alkaline basalts (Mallik and Dasgupta, 2012), we suggest such a
scenario is not the case for the Liangcheng basalts since these basalts
exhibit much lower TiOy contents at similar MnO contents, indicating
inconsistency with the reacted melts (Fig. 7A). As a consequence, we
suggest that the pyroxenite in the source of the Liangcheng basalts is
silica-deficient pyroxenite.

5.3. Melting conditions of the pyroxenite-bearing asthenosphere

Preferential melting of non-peridotite source lithology extracts latent
heat from the ambient mantle and further facilitates the melting process,
but suppresses the melting of the surrounding peridotite (Oliveira et al.,
2021). Consequently, the mass contribution of such low-solidus lithol-
ogy (e.g., pyroxenite) to the melt overweighs its proportion in the
mantle (Lambart et al., 2016). The complicated chemical and thermal
processes make it difficult to recover the melting condition based on the
bulk major-element compositions of primary magma acquired by
reverse methods for single-source lithology (e.g., the addition or
removal of olivine, Lee et al., 2009; Herzberg, 2011). Herein, we
employed a forward-modeling method based on whole-rock incompat-
ible trace-element compositions using REEBOX PRO (Brown and Lesher,
2016) to explore the melting conditions and source characteristics.

REEBOX PRO is a software package that can simulate the adiabatic
decompression melting of heterogeneous mantle sources containing
anhydrous peridotite (lherzolite), hydrous peridotite (lherzolite),
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Fig. 5. Whole-rock (A) ***Nd/***Nd vs. 8 Sr/%sr; (B) 17°Hf/*""Hf vs. 1**Nd/***Nd; (C) 2°"Pb/?**Pb vs. 2°°Pb/2%*Pb; (D) 2°°Pb/2°**Pb vs. 2°°Pb/2**Pb diagrams. The
areas for Indian MORB and Pacific MORB are taken from Xu and Zheng (2019), and data for FOZO (Cook-Austral), HIMU (St. Helena), EM1 (Pitcairn), and EM2
(Samoa) are from the GEOROC database (http://georoc.mpch-mainz.gwdg.de/georoc/). The average Sr, Nd, Pb, and Hf isotopic compositions for depleted-MORB
mantle (DMM) are from Workman and Hart (2005) and references therein. The data of ophiolites from the Neo-Tethys Ocean, Paleo-Tethys Ocean, and Paleo-
Asian Ocean are compiled in Liu et al. (2015¢). The mantle xenoliths from Hannuoba and Jining are compiled in Zhao et al. (2021).

pyroxenite (three types: G2, MIX1G, and KG1 pyroxenite) and/or re-
sidual harzburgite (Brown and Lesher, 2016; Brown et al., 2020). The
key model inputs include the mantle potential temperature, lithospheric
thickness, trace element abundances, isotopic composition, and water
content of the source rocks. Assuming that all specified lithologies are in
thermal equilibrium rather than chemical equilibrium, the program uses
thermodynamic and experimental constraints to quantify their polybaric
productivities (dF/dP) at discrete decompression steps (per 0.01 GPa)
between the deepest solidus and the base of the lithosphere. The mineral
model parameterizations of the solidus are based on experimental con-
straints and thermodynamic modeling using Perple X (Connolly, 1990,
2005). Using experimentally constrained mineral modes, melting
modes, and either temperature-dependent or static mineral-melt parti-
tion coefficients, the model then calculates the compositions of instan-
taneous melts generated by the incremental batch melting of each
lithology during each decompression step. For each lithology, instan-
taneous melts are mixed along the melting column to provide a “column-
accumulated” melt composition at the top of the melting column.
Finally, the bulk (aggregate) igneous crust thickness and composition
are calculated by pooling all column-accumulated melts derived from all
the lithologies (pooled melts) (Brown et al., 2020).

Before the modeling, we need to point out that the factor of CO, was
not taken into account in the software, which may affect the results
because the carbonated mantle source has been proposed to play an
important role in forming the Cenozoic alkaline basalts in Central-East

Asia (Zeng et al.,, 2010, 2021; Yang et al.,, 2012; Sakuyama et al.,
2013; Huang et al., 2015; Li et al., 2017; Wang et al., 2017; Xu et al.,
2018; He et al., 2019b; Cai et al., 2022; Zou et al., 2022). To explore
whether CO; is involved in the mantle source of the Liangcheng basalts,
we used a SiO, vs. CaO diagram for discrimination (Herzberg and Asi-
mow, 2008, Fig. S7). The theory behind this method lies in the fact that
COq-bearing basalts are usually characterized by much lower SiO, and
higher CaO than CO.-free basalts (Herzberg and Asimow, 2008). The
results show that the Liangcheng basalts plot in the region of CO,-free
basalts, suggesting that the impact of CO5 on the studied basalts was
minor (Fig. S7). This inference is supported by evidence that the nega-
tive anomalies in Zr-Hf and Ti, which are typical features of COs-bearing
basalts, are not observed in the studied samples (Zeng et al., 2010).
Although we could not rule out the possibility that CO, had once been
involved in the source region, for which case the melts gradually evolved
from carbonatitic melt to carbonate silicate melt and eventually to
alkaline basalts (Xu et al., 2020 and references therein), we suggest that
in this situation the effect of CO3 on the composition of the basalts has
been strongly diluted and therefore has an insignificant influence on the
final melt compositions.

After evaluating the CO5 impact, we conducted our modeling using
the REEBOX PRO software. Four main controlling factors were consid-
ered in the modeling: (1) mantle potential temperatures, (2) source
water content, (3) source compositions (lithological proportions), and
(4) final depths of melting (lithosphere-asthenosphere boundary). Grid
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Fig. 6. Ni concentrations (A), Mn concentrations (B), and Ca concentrations (C) vs. Fo for olivine grains in the Liangcheng basalts; (D) 100*Mn/Fe vs. 10,000*Zn/Fe
ratios, (E) Mn vs. Zn concentrations and (F) Ni concentrations vs. Mn/Zn ratios diagrams for Liangcheng olivine phenocrysts. Olivine Ni data plotted in (A) is from
EPMA, while the Mn and Ca data plotted in (B) and (C) are acquired by LA-ICP-MS. The compositions of olivines crystallized from peridotite melts calculated by
Herzberg (2011) are shown for comparison. The calculation was based on a fertile peridotite source with Ni of 1,964 ppm, Ca of 24,657 ppm, and Mn of 1,007 Mn.
The calculated olivines are for both primary magmas and derivative magmas produced by olivine fractionation. The filled fields are for calculated olivines of the
primary magmas. The other numbered lines and fields are for calculated olivines from derivative magmas with different MgO contents (Herzberg, 2011). Fields for
olivines that have been interpreted to be derived from pyroxenite, peridotite, and pyroxenite-peridotite mixed source are from Howarth and Harris (2017) and
references therein, and for olivine from Pitcairn, Koolau, Loihi, MORB, and Komatiite are from Shi et al. (2022) and references therein. Data for olivine phenocrysts in
Cenozoic alkaline basalts from Mongolia (Zhang et al., 2021), NE China (Chen et al., 2015a; Wang et al., 2015; Zhang and Guo, 2016; Pang et al., 2019; Liu et al.,
2022), North China (Xu et al., 2012b; Liu et al., 2015b; Li et al., 2016b; Xu et al., 2017; Hong et al., 2020, 2021), and SE China (Sun et al., 2017; Zeng et al., 2017) are
illustrated in Table S4.

research was then carried out to find a combination of parameters when source, a final melting depth of ~2 GPa (corresponding to a lithospheric
the resultant melt composition best matched the studied basalts. The thickness of ~66 km), ~1380 °C mantle potential temperature, and ~
effects of a single parameter on the compositions of the resulting melts 500 ppm source water content in the source (Fig. 10). Note that the
are shown in Fig. 9. After grid inspection, the best-fit combination ap- silica-deficient pyroxenite here is KG1. In addition to KG1, the other
pears to be 80% lherzolite +20% silica-deficient garnet pyroxenite in the silica-deficient pyroxenite incorporated in the software, MIX1G, has also

10
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roxenite melts are calculated through the batch melting model of Yang and Zhou (2013). The dashed lines with blue and purple cross represent Cpx fractional and
equilibrium crystallization (FC and EC) by 10 wt% increments each step (Yang and zhou, 2013); FCKANTMS values vs. whole-rock Mg number (Mg*) (C) and In
(Si05/(Ca0 + Nay0 + Ti0y)) (D) (Yang et al., 2019). All plotted basalts have high MgO contents (> 8 wt%) and plot on the CO»-free side in the CaO vs. SiO, diagram
(Fig. S7). Data for basalts from Mongolia (Barry et al., 2003; Chuvashova et al., 2007; Savatenkov et al., 2010; Hunt et al., 2012; Yarmolyuk et al., 2015; Zhang et al.,
2021), NE China (Chen et al., 2007; Chuvashova et al., 2007; Ho et al., 2008; Yan and Zhao, 2008; Zou et al., 2008; Xu et al., 2012a; Ho et al., 2013; Chen et al.,
2015b; Wang et al., 2015; Yu et al., 2015; Guo et al., 2016; Zhang and Guo, 2016; Togtokh et al., 2019; He et al., 2019b; Pang et al., 2019; Lei et al., 2020), North
China (Tang et al., 2006; Chen et al., 2007; Liu et al., 2008a; Chen et al., 2009b; Zhang et al., 2009; Zeng et al., 2010, 2011, 2021; Wang et al., 2011; Xu et al., 2012b,
2017; Sakuyama et al., 2013; Hong et al., 2020; Zou et al., 2022), and SE China (Zou et al., 2000; Ho et al., 2003; Zeng et al., 2013; Li et al., 2015, 2016c, 2020; Liu
et al., 2016; Sun et al., 2017; Yu et al., 2019) are listed in Table S5. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

been considered. It can be observed that the results yielded by the
MIX1G model show similar variations to those of the KG1 model when
changing the parameters during modeling (Fig. S8). The best-fit model
acquired using MIX1G as the end member shows identical final melting
pressure and water content but a higher proportion of pyroxenite in the
source and lower melting temperature than the KG1 model (Fig. 10).
The best-fit conditions given by the MIX1G model do not fit well with the
Liangcheng basalts compared to the KG1 model, which suggests MIX1G
may not be an appropriate candidate. Such a result indicates that a
pyroxenite with a high proportion of relatively refractory components,
like KG1, is needed in the source of Liangcheng basalts because KG1 is a
mixture of peridotite and pyroxenite and contains fewer fusible com-
ponents than MIX1G (Kogiso et al., 1998). The estimated melting pres-
sure and temperature align well with those calculated by whole-rock
compositions (1384 + 17 °C and 2.2 + 0.2 GPa) (Figs. 11, S9; Lee et al.,
2009; Herzberg, 2011), and the predicted water content approximates
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those given by the minerals and whole-rock chemistry (550-759 ppm,
see text in Supplemental Material, Figs. S10, S11, and Table S3),
implying that our model is reliable. The melting temperature
(~1380 °Q) is significantly higher than the xenolith-based temperatures
of the regional lithospheric mantle (< 1000 °C; Chen et al., 2001; Huang
and Xu, 2010; Zhao et al., 2021), suggesting an asthenospheric origin.
Since lithosphere may act as a passive mechanical barrier to continuous
upwelling of the asthenosphere, the estimated final melting depth can be
approximately treated as the melting pressure of these basalts (Niu et al.,
2011). It should be noted that the melting pressure (~2 GPa, corre-
sponding to the depth of ~66 km) is slightly lower than the regional
lithospheric thickness as constrained by geophysical observations (~80
km, Chen et al., 2009a; Huang et al., 2009), which may be attributed to
lithospheric thickening by asthenospheric thermal decay after basalt
formation (Xu et al., 2004).
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predicted plagioclase (Pl), spinel (Sp), and garnet (Gt) lherzolite multiple
saturation points (MSPs) as a function of increasing pressure from 1 atm to 4.0
GPa are also shown for comparison. Pl and Sp lherzolite MSPs are calculated
based on the model of Till et al. (2012) and the calculation of Gt lherzolite MSPs
is according to Grove et al. (2013). The pressure range for the calculation of PI,
Sp, and Gt lherzolite MSPs is 1 atm to 1.4 GPa, 1.4 to 2.4 GPa, and 2.4 to 4GPa,
respectively. Mg# = 0.73, Nak* = 0.283 and 0.515, P,05 = 0.7 wt% were used
for the calculation. The three segments of each trend show compositional
change of MSPs for Pl, Sp, and Gt lherzolite facies with increasing pressure.
Data for experimental melts from silica-excess (SE) and silica-deficient (SD)
pyroxenites as well as harzburgite are compiled in Liu et al. (2008a), and Ma
et al. (2016). Data for basalts from Mongolia, NE China, North China, and NE
China are shown in Table S5, and data sources are the same as those in Fig. 7.

5.4. Recycled components in the mantle source

It is widely accepted that recycled components were introduced in
the mantle source of the Cenozoic basalts in Central-East Asia via sub-
duction or delamination, and various types of recycled materials have
been identified using geochemical and isotopic tools. These recycled
components include continental crust, oceanic crust (both the upper and
lower oceanic crust), and sediment (with or without carbonate) (Zeng
et al., 2011; Xu et al., 2012a; Liu et al., 2015a, 2015b; Li et al., 2017).
The Liangcheng basalts show positive Nb-Ta and negative Pb anomalies,
in contrast with the continental crust (Rudnick and Gao, 2014). Instead,
they are characterized by high Ce/Pb and Nb/U ratios, indicating the
involvement of igneous oceanic crust. This is because subducted igneous
oceanic crusts usually have high Nb/U and Ce/Pb ratios due to the
preferential release of U and Pb relative to Nb and Ce during slab
dehydration (Stracke et al., 2003). In addition, the absence of positive
europium anomaly and positive correlation between Eu/Eu* and SiO; in
the Liangcheng basalts suggest insignificant plagioclase accumulation in
the source, thus ruling out the possibility of the involvement of lower
oceanic crust (cumulate gabbro) in the source because lower oceanic
crust contains abundant plagioclase and has high SiO, contents and
relatively higher Sr, Eu concentrations than similarly incompatible el-
ements (Xu et al., 2012a). Besides that, these basalts display enriched
mantle-type OIB trace-element patterns and radiogenic Sr isotopic
compositions, which may imply the incorporation of sediments into
their source (Plank and Langmuir, 1998; Chauvel et al., 2008). To
discriminate the types of incorporated sediments, we carried out quan-
titative modeling using trace elements and isotopic systematics (Fig. 12).
We chose the depleted-MORB mantle (DMM), altered oceanic crust, and
several kinds of sediments as endmembers; it should be noted that we
did not consider carbonate-bearing sediments because carbonate plays a
minor role in the source of the Liangcheng basalts as we discussed in
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section 5.3. The modeling results suggest that both pelagic and terrig-
enous sediments were involved in the mantle source of the Liangcheng
basalts (Fig. 12). As a result, we conclude that recycled oceanic crust,
pelagic and terrigenous sediments collectively contributed to the for-
mation of Liangcheng basalts. These recycled enriched components
melted and reacted with the ambient peridotite to form a silica-deficient
pyroxenite-bearing mantle domain, which acted as a source lithology for
the studied basalt.

The Central-East Asian continent has experienced multiple subduc-
tion events during the Phanerozoic (Windley et al., 2010). These sub-
ductions involve the Paleo-Tethys oceanic crust and subsequent deep
subduction of the Yangtze continental crust (> 200 Ma; Wu et al., 2009),
the Paleo-Asian oceanic crust (540-200 Ma; Wan et al., 2018; Jing et al.,
2022), the Mongol-Okhotsk oceanic crust (> 120 Ma; Kravchinsky et al.,
2002; Van der Voo et al., 2015), and the (Paleo-) Pacific oceanic crust (<
180 Ma; Ma and Xu, 2021 and references therein). Discriminating the
origin of recycled components is difficult because of the cumulative
effects of different tectonic events. However, we compiled olivine
chemistry, whole-rock geochemical and isotopic data of Cenozoic
alkaline basalts from Central-East Asia (including NE China, North
China, SE China, and Mongolia; Tables S4, S5) and we found that these
basalts not only have similar source lithology but also show broadly
overlapping isotopic compositions (Figs. 6, 7, 8, 12), suggesting that
their mantle sources may share the same origins. Consequently, we
propose that subducted oceanic crusts and sediments from different
subduction episodes introduced various recycled components into the
asthenospheric mantle. After long periods of mantle convection and
mixing, recycled components of different origins are dispersed and may
serve as mantle sources for the Liangcheng basalts as well as other
Cenozoic alkaline basalts in Central-East Asia. We suggest that this
scenario might explain the wide similarities in the source lithology and
isotopic compositions of these basalts (Figs. 6, 7, 8, 12).

5.5. Melting mechanism of the Liangcheng basalts and its implication for
the generation of intraplate basaltic magmatism in Central-East Asia

Cenozoic alkaline basalts beyond the BMW have been previously
interpreted as derived from localized asthenospheric upwelling due to
lithospheric rifting or delamination (Barry et al., 2003; Hunt et al.,
2012), large-scale convection related to mantle plume (Johnson et al.,
2005), or subduction of the Pacific plate or India-Eurasia collision (Li
et al., 2018; Chen and Faccenda, 2019). The Liangcheng basalts are
located in the North China Craton, which experienced craton destruc-
tion during the Mesozoic (Zhu and Xu, 2019; Wu et al., 2019). Large-
scale extension structures, lithospheric delamination or rifting, and
associated magmatism occurred during this period (Ma and Xu, 2021),
much earlier than the formation of the Cenozoic basalts. Therefore,
asthenospheric upwelling triggered by lithospheric rifting or delami-
nation is unlikely in the studied basalts. For the mantle plume hypoth-
esis, the relatively low calculated mantle potential temperatures
(<1400 °C), the absence of geophysical observations and geological and
petrological evidence, such as positive thermal anomalies, progressive
age migration, radiant mafic dykes, or high-Mg” picrite, show no signs
for the presence of a mantle plume beneath the studied area. As a
consequence, the mantle plume model is not a candidate. Recently,
direct mantle melting induced by subduction of the Pacific slab (Xu
et al., 2018; Chen and Faccenda, 2019) or India-Eurasia collision (Li
etal., 2018; Zhang et al., 2021) has been frequently suggested to explain
the formation of widespread Cenozoic basalts in Central and East Asia.
However, the Liangcheng area is away from the western edge of the
subducted Pacific plate, as revealed by seismic images (Fig. 1B; Huang
and Zhao, 2006), and can hardly be reached by mantle flow induced by
the India-Eurasia collision because of the obstruction of the thick Ordos
lithosphere (Yu et al., 2021). As a result, these basalts are unlikely to be
directly linked to these two subduction events. Based on the above
discussion, we suggest that an alternative melting mechanism is
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reader is referred to the web version of this article.)

required to account for the generation of these basalts.

Edge-driven convection due to steps in the lithospheric structure/
thickness combined with plate movement could be a feasible mechanism
to explain the origin of the Liangcheng basalts. The lithosphere in the
study area probably thinned before the basalt eruption based on the
compositional transition from Mesozoic basalts to Cenozoic basalts (Guo
et al., 2014). This inference is supported by the absence of garnet-
bearing xenoliths (Zhao et al., 2021), the calculated low melting pres-
sure of our samples and regional xenolith-bearing basalts (Xu
et al.,2017), and the present lithospheric thickness determined by sur-
face wave tomography (~80 km; Chen et al., 2009a; Huang et al., 2009).
In addition, S-receiver function images have revealed that the litho-
spheric thickness of the western NCC is characterized by significant
lateral variations, which is 200 km in the Ordos block and sharply
thinned to 80 km in the Yinchuan-Hetao and Shaanxi-Shanxi rift areas
over a lateral distance of <200-400 km (Chen et al., 2009a). Such
abrupt and significant changes in lithospheric thickness, combined with
the disturbance from deep subduction of the Pacific plate, would effi-
ciently cause edge-driven convection of the asthenosphere beneath the
NCC, especially if the viscosity of the asthenospheric mantle was low-
ered by melts and volatiles released from the Pacific plate, as has been
suggested by a recent numerical modeling study (Sun and Liu, 2023).
Since the Liangcheng area locates in the joint of the Yinchuan-Hetao and
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Shaanxi-Shanxi rift system with a thin lithosphere and is adjacent to the
Ordos block, it is, therefore, in a propitious tectonic situation to trigger
edge-driven convection. In this case, decompression melting of the
asthenospheric mantle would occur when mantle convection drives
fusible mantle domains from areas with relatively thick lithosphere to
those that have thin ones.

The Liangcheng basalts share many similarities with many other
Cenozoic alkaline basalts in Central-East Asia, especially those with high
MgO (> 8 wt%) and plotted on the COo-free side in the CaO vs. SiO;
diagrams (Fig. S7). These similarities include: 1) the geological distri-
bution patterns in which these basalts are preferentially developed along
deep major faults or weak zones between stable blocks (Fig. 1A); 2) they
all have silica-deficient pyroxenite in the source (Figs. 6, 7, 8); 3) they
yield low melting pressure (Fig. 11, <3 GPa); 4) similar recycled com-
ponents such as oceanic crust and sediment (both pelagic and terrige-
nous) existed in their mantle source (Fig. 12). Although some basalts
with extreme geochemical signatures (nephelinites and potassic/ultra-
potassic basalts) may have distinct origins (mantle transition zone,
Sakuyama et al., 2013; Wang et al., 2017; Xu et al., 2020; Zeng et al.,
2021), most of the alkaline basalts in Central-East Asia generally have
overlapping geochemical features and similar source components and
melting conditions (Figs. 6, 7, 11, 12). These characteristics are difficult
to reconcile with those of previous models, including mantle plumes,
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lithospheric rifting or delamination, or plate subduction. Instead, these
similarities are likely the result of decompression melting of small-scale
mantle convection due to regional lithospheric thickness variations. This
proposal is consistent with recent studies suggesting that small-scale
mantle convection driven by regional lithospheric thickness variations
may have occurred beneath SE and NE China (Xu et al., 2022; Zhou
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et al., 2023). Similar small-scale convection has also been detected in the
Baikal rift zone of Central Asia by geophysical observations and pro-
posed to account for the intraplate magmatism in regions with thin
lithosphere and sharp thickness variations, such as Southeast Australia,
North America, and West Africa (Missenard and Cadoux, 2012; Davies
and Rawlinson, 2014; Ballmer et al., 2015). Based on the above
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considerations, we suggest that edge-driven convection may be ubiqui-
tous beneath Central-East Asia and probably plays an important role in
the formation of pervasive Cenozoic small-volume alkaline basalts.

6. Conclusions

We conducted comprehensive geochemical studies and thermody-
namic modeling of the Liangcheng basalts to explore the source char-
acteristics and melting mechanisms of continental intraplate alkaline
basalts beyond the Big Mantle Wedge. These basalts have a silica-
deficient pyroxenite-bearing mantle source (20% silica-deficient py-
roxenite +80% peridotite) with melting pressures and temperatures of
~2GPa and 1380 °C, respectively. Considering the relatively low
melting pressure, regional lithospheric thickness variations, and tec-
tonic history, we propose that edge-driven convection could be a likely
mechanism for the studied basalts. Similar source characteristics,
melting conditions, and geological distribution patterns between the
Liangcheng basalt and many other regional Cenozoic alkaline basalts,
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combined with similar lithospheric thickness variations observed
beneath these basalts, suggest that edge-driven convection may be
ubiquitous beneath Central-East Asia and that such a melting mecha-
nism could serve as a major driving force for widespread continental
intraplate basaltic magmatism.
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