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A B S T R A C T   

Continental intraplate basalts are widespread across Central-East Asia, and their melting mechanisms are poorly 
known. Herein, we present integrated studies of petrology, elemental-isotope systematics, and thermodynamic 
modeling of Cenozoic Liangcheng basalts, a representative volcanic field of the vast intracontinental basaltic 
magmatic province covering Central-East Asia, with the aim of constraining the source characteristics and 
melting dynamics in this intraplate setting. These basalts have moderate-to-low silica (45.2 to 49.0 wt%), high 
Fe2O3T (10.0 to 12.2 wt%), and alkali (Na2O + K2O, 4.27 to 7.38 wt%) contents with ocean-island basalt (OIB) 
-like trace-element patterns and moderately depleted to slightly enriched Sr–Nd–Pb–Hf isotopes (87Sr/86Sr =
0.703924–0.705176, 143Nd/144Nd = 0.512540–0.512861, 206Pb/204Pb = 17.2752–17.9180, 207Pb/204Pb =
15.4860–15.7383, 208Pb/204Pb = 37.6995–38.3599, and 176Hf/177Hf = 0.282852–0.282999). The major ele
ments (e.g., high Fe/Mn, low CaO) and olivine chemistry (e.g., high Ni, Zn/Fe, and low Mn/Zn) favor derivation 
from a silica-deficient pyroxenite-bearing source, while the trace-element and isotope systematics suggest the 
involvement of recycled components including oceanic slab and sediment (both terrigenous and pelagic). A grid 
search with a thermodynamic melting model using incompatible trace elements was carried out to impose 
quantitative constraints on the mantle source. The modeling results show that the source of the Liangcheng basalt 
contains 80% primitive mantle peridotite and 20% silica-deficient pyroxenite. This exercise and geobarometric 
calculation using major elements suggest that melting occurs at a potential temperature of 1380 ◦C underneath a 
thinned continental lithosphere with a basal pressure of ~2GPa, consistent with the source characteristics and 
melting conditions estimated for many other volcanic fields in the vast Central-East Asia magmatic province. By 
combining these results with the regional geology and tectonic history, we can suggest that these basalts were 
formed by decompression melting owing to mantle convection driven by lithospheric thickness variations (edge- 
driven convection). We suggest that such a melting scenario is ubiquitous beneath Central-East Asia and may 
have played a vital role in the formation of widespread intraplate continental alkaline basalts.   

1. Introduction 

Intraplate volcanism distributed far from plate boundaries is 
important for understanding the geodynamic processes of Earth’s 
mantle (King and Ritsema, 2000; Sobolev et al., 2005; Hoernle et al., 
2006; Conrad et al., 2011; Ballmer et al., 2013; Wang et al., 2015). While 
high-volume (>105 km3) magmatism is usually fed by mantle plumes 
(Bryan and Ernst, 2008), some small-volume diffusive magmatism 
shows no obvious connection with plate-boundary processes or mantle 

plumes (McGee and Smith, 2016). The origin of this intraplate volca
nism remains unclear. The proposed models include: 1) splash plume 
triggered by cold downwelling material (Davies and Bunge, 2006); 2) 
passive upwelling caused by lithospheric thinning or rifting (Hoernle 
et al., 2006); 3) shear-driven upwelling related to relative motion be
tween the lithosphere and asthenosphere (Conrad et al., 2011); 4) plate 
subduction-induced mantle upwelling (Kuritani et al., 2011); 5) edge- 
driven convection due to steps in lithospheric structure/thickness 
combined with plate movement (King and Ritsema, 2000). 
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The Central-East Asia continent became a coherent landmass after a 
series of Phanerozoic subduction and/or collision episodes, and it has 
witnessed widespread basaltic magmatism during the Cenozoic 
(Fig. 1A). P-wave tomography has revealed a stagnant subducted (Paleo- 
) Pacific plate in the mantle transition zone (Huang and Zhao, 2006), 
and the mantle domain above the plate is called the Big Mantle Wedge 
(BMW) (Zhao et al., 2004). Cenozoic basalts within the structure of the 
BMW span a wide composition range from extremely silica-deficient 
nephelinite to silica-excess quartz tholeiite (Xu et al., 2018). Litholog
ical heterogeneous mantle sources containing garnet pyroxenite, eclo
gite, carbonated eclogite, and carbonated peridotite have been 
introduced to explain compositional variations (Liu et al., 2008a; Zeng 
et al., 2010, 2011, 2021; Huang et al., 2015; Li et al., 2017; Wang et al., 
2017; He et al., 2019a; Yu et al., 2019; Xu et al., 2022; Zou et al., 2022). 
The melting of such lithological heterogeneities is generally interpreted 
to be related to the stagnant (Paleo-) Pacific slab in the mantle transition 
zone because of the spatial-temporal coincidence between the subducted 
slab and basalts (Figs. 1A, B; Chen et al., 2017; Xu et al., 2018; Cai et al., 
2022), with some exceptions in which the melting is driven by small- 
scale convection due to lithospheric thickness variations (Guo et al., 
2020; Sun et al., 2020; Xu et al., 2022). Cenozoic basalts beyond the 
BMW display geochemical compositions similar to their counterparts, 
and lithological heterogeneities have also been inferred from the source 
(He et al., 2019b; Pang et al., 2019; Sheldrick et al., 2020a; Zhang et al., 
2021; Liu et al., 2022). However, unlike those within the BMW, basalts 
beyond the BMW are spatiotemporally far from any active margins 
(converge or disperse) (Windley et al., 2010; Xiao et al., 2015) and their 
melting mechanism remains hotly debated. Existing explanations 
include: 1) localized asthenospheric upwelling owing to lithospheric 
rifting or delamination (Barry et al., 2003; Hunt et al., 2012); 2) large- 
scale convection related to mantle plume (Johnson et al., 2005); 3) 
direct mantle melting triggered by coeval subduction/convergent pro
cesses, that is, subduction of the Pacific plate and/or India-Eurasia 
collision (Li et al., 2018; Chen and Faccenda, 2019). The above de
bates are largely owing to the lack of constraints on the thermal- 
chemical conditions of the lithologically heterogeneous mantle source, 
which are crucial for understanding the origin and melting mechanism 
of these intracontinental basalts. 

Herein, we chose to study the Liangcheng basalts, which are far from 
the front edge of the stagnant Pacific slab (> 500 km) (Fig. 1B), to 
explore the mantle source characteristics and melting mechanisms of 
continental intraplate basalts. We present an integrated study on min
eral chemistry, whole-rock geochemistry, Sr–Nd–Pb–Hf isotope com
positions, and thermodynamic modeling to constrain their source 
characteristics and melting conditions. Our study reveals that these 
basalts originate from a silica-deficient pyroxenite-bearing mantle 
source with a low final melting pressure (~2 GPa) that corresponds to a 
thin lithosphere (< 70 km), which is consistent with most alkaline ba
salts in the studied and nearby regions. Our results, together with pub
lished geochemical data, geophysical observations, and regional 
geological history, suggest that decompression melting due to mantle 
convection driven by lithospheric thickness variations (edge-driven 
convection) may have played an important role in the formation of the 
Liangcheng basalts as well as many other Cenozoic intracontinental 
alkaline basalts across Central-East Asia. 

2. Geological background and sample description 

The Central-East Asia continent is composed of three cratons, 
including the Siberian Craton in the north, the North China Craton 
(NCC) in the middle, and the South China Craton in the south (Fig. 1A). 
Their assembly is marked by three major tectonic events, including the 
closure of the Paleo-Tethys Ocean between the South China Craton and 
the NCC before 200 Ma (Wu et al., 2009), the closure of the Paleo-Asian 
Ocean along the Solonker suture zone at 260–230 Ma (Wan et al., 2018; 
Jing et al., 2022), and the closure of the Mongol-Okhotsk Ocean along 

the Mongol-Okhotsk suture zone at 155–120 Ma (Kravchinsky et al., 
2002; Van der Voo et al., 2015). After these tectonic events, the three 
cratons were bounded by two complex orogenic belts, namely the 
Central Asia Orogenic Belt between the NCC and the Siberia Craton and 
the Qinling-Dabie-Sulu Ultra-High Pressure Orogenic Belt between the 
NCC and the South China Craton (Fig. 1A). 

The subduction of the (Paleo-) Pacific slab that started at ~180 Ma 
has led to the development of N-NE trending faulting and rifting sys
tems, vast magmatism, and large-scale graben basins, as well as the 
formation of the North-South gravity lineament (NSGL) in East Asia (Ma 
and Xu, 2021 and references therein). Cenozoic basaltic magmatism in 
East Asia mainly occurred along the N-NE trending deep major faults (e. 
g., the Tan-Lu fault in the eastern NCC and Yilan-Yitong and Fushun- 
Mishan faults in NE China, Fig. 1A) or around the graben basins (e.g., 
Songliao Basin, Fig. 1A). In contrast, Central Asia (areas west of the 
NSGL) remains an intracontinental setting since the closure of the 
Mongol-Okhotsk Ocean during the Late Mesozoic to Early Cretaceous 
(Van der Voo et al., 2015; Sheldrick et al., 2020b) and is now away from 
the western leading edge of the Pacific slab, as revealed by the P-wave 
images (Huang and Zhao, 2006). The lithospheric thickness of Central 
Asia shows significant variations, as illustrated by geophysical obser
vations and Mesozoic-Cenozoic basalt-born mantle xenoliths (Ionov, 
2002; Chen et al., 2009a; Dai et al., 2020). The ancient blocks (Ordos, 
Gobi, and Siberia) are generally thick (> 200 km), whereas the segments 
between these ancient blocks commonly have a thin lithosphere, and 
Cenozoic basaltic magmatism is preferentially spread in regions with 
thin lithosphere (Fig. 1A). 

The Liangcheng volcanic field belongs to the western part of NCC and 
locates at the joint of the Yinchuan-Hetao basin and the Shaanxi-Shanxi 
rift system (Fig. 1A) and has a wide distribution area of 1500 km2 (Li and 
Li, 2003). It is underlain by thin (<100 km) and fertile lithospheric 
mantle, as evidenced by garnet-free lherzolite xenoliths in Cenozoic 
basalts (Zhang et al., 2012; Zhao et al., 2021) and seismic tomography 
(Chen et al., 2009a; Huang et al., 2009). Lithospheric thinning was 
proposed to have occurred at some point during the Early Cretaceous 
and Cenozoic, based on the compositional variation of regional basalts 
(Guo et al., 2014). The Neogene basalts are interbedded with several 
layers of sedimentary rocks (coal, mudstone, sandstone, and volcanic 
breccia), and unconformably underlain by the Archean TTGs and 
Jurassic-Cretaceous sandstone, shale, and tuff breccia, and overlain by 
Quaternary loess and sandstone (Fig. 2). These basalts occur either as 
volcanic cones or as lava flows with typical columnar jointing (Fig. S1) 
and the thickness of volcanic strata is basically >200 m and can up to 
300 m in the southeast of the volcanic field. Whole-rock K–Ar dating of 
this volcanic field yields ages ranging from Oligocene to Miocene 
(24–15 Ma; Li and Li, 2003). 

Thirty samples from 13 volcanic cones and three lava flow fields 
were collected, and only fresh samples without mineral cumulates were 
selected to be analyzed to obtain geochemical data. These rocks show a 
dark-grey colour with a massive structure and aphyric or porphyritic 
texture. The phenocrysts are dominated by olivine, with minor clino
pyroxene. Olivine phenocrysts are euhedral to subhedral with embayed 
absorption shapes and vary in size from 0.5 mm to 2 mm, with a total 
amount of 5 vol%. Cracks developed, but no deformation structures 
were observed in the olivine grains (Fig. S1). Clinopyroxenes are 
anhedral and irregular in shape with a size of 0.5–1 mm and 1 vol% in 
volume (Fig. S1). The groundmass consists of olivine, clinopyroxene, 
plagioclase, Fe–Ti oxide microcrystals, and glass. No obvious petro
graphic evidence of magma mixing or mingling (e.g., complex zoning) 
was observed in these samples. 

3. Analytical methods 

3.1. In-situ mineral chemistry analyses 

In-situ mineral (olivine, clinopyroxene, and feldspar) major-element 
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Fig. 1. (A) Topography map of Central-East Asia and distribution of late Cenozoic intraplate volcanic province; the distribution patterns of major faults, basins, and 
magmatism are according to Wang et al. (2015), He et al. (2019b) and Yu et al. (2019). (B) Seismic tomography image of the deeply subducted Pacific slab and 
structure of big mantle wedge (after Huang and Zhao, 2006). F1, Xinlin-Xiguitu fault; F2, Hegenshan-Heihe fault; F3, Solonker-Xar Moron-Changchun-Yanji suture; 
F4, Chifeng-Kaiyuan fault; F5, Yitong-Yilan fault; F6, Jiamusi fault; F7, Dunhua-Mishan fault; F8, Tan-Lu fault; F9, Jiang-Shao fault; F10, Songxi-Changting, Zhenghe- 
Dapu, and Changle-Nan’ao faults. B1, Songliao basin; B2, Hailarr basin; B3, Tamsag basin; B4, Erlian basin; B5, East Gobi basin; B6, Yin’gen basin; B7, Yinchuan- 
Hetao basin; B8, Shaanxi-Shanxi rift system. 
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compositions were determined on carbon-coated polished sections using 
JXA-8100 electron microprobe at the Key Laboratory of Submarine 
Geosciences, Second Institute of Oceanography, Ministry of Natural 
Administration. The analyses were performed with an accelerating 
voltage of 15 kV, a 20 nA current, and beam diameters of 1–5 μm. Data 
were corrected using a modified ZAF (atomic number, absorption, 
fluorescence) correction procedure. Calibration standards were olivine 
(Mg), rutile (Ti), pyrope (Al), Cr2O3 (Cr), hematite (Fe), Mn2O3 (Mn), 
diopside (Si, Ca), jadeite (Na), and NiO (Ni). Peak counting times were 
20 s and background counting times were 10 s on each side of the peaks. 
Internal standards (SPI olivine and diopside) were analyzed as unknown 
before the analyses, and the SPI olivine was also used as a secondary 
standard to check the olivine data accuracy. Analysis precision for 
measured contents >10% and > 0.5% are generally better than 1% and 
5%, respectively, and for elements with contents <0.5 wt%, the preci
sion may be less than 10%. The poor accuracy for elements with low 

concentrations is attributed to the instrument’s precision and inappro
priate experimental conditions (low electric current and/or short signal 
acquisition time) (Lambart et al., 2022). In-situ trace-element analysis 
for the olivine grains was conducted using a 193 nm RESOlution S-155 
laser-ablation system coupled to a Thermo iCAP RQ inductively coupled 
plasma mass spectrometer (LA-ICP-MS) at the State Key Laboratory of 
Geological Processes and Mineral Resources (GPMR), China University 
of Geosciences, Wuhan. The analyzed samples were ablated using a 40 
μm spot size, 10 Hz repetition rate, and 4 J/cm2 corresponding energy 
density. Helium gas (~400 ml/min) carrying the ablated sample aerosol 
was mixed with Argon gas (~800 ml/min) and a small amount of Ni
trogen gas (~4 ml/min) as an additional diatomic gas to enhance 
sensitivity, before flowing into the ICP-MS. Repeated analyses of the 
USGS standards (BIR-1G, BHVO-2G, and BCR-2G) indicate precision and 
accuracy are both better than 10% for most analyzed elements. The 
measured trace elements were: Li, P, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn. 
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The NIST glasses were used for correcting the signal drift. The isotope 
29Si was used as the internal standard in conjunction with the Si con
centrations determined previously by EPMA. ICPMSDataCal software 
(Liu et al., 2010) was used for the off-line data selection, integration of 
background and analyte signals, time-drift correction, and quantitative 
calibration. Data for olivine, clinopyroxene, and feldspar can be found in 
Table S1. 

3.2. Whole-rock geochemical analyses 

Whole-rock major-element compositions were determined by the 
traditional X-ray fluorescence (XRF) method using a Shimadzu 
Sequential 1800 spectrometer at GPMR. The detailed procedures were 
described by Ma et al. (2012). According to the measured values of 
standard (GBW07105), the analytical uncertainties for most elements 
are generally less than 5%. Bulk rock trace-element compositions were 
acquired using an Agilent 7700e ICP-MS after acid digestion of the 
samples in high-pressure Teflon bombs at Wuhan SampleSolution 
Analytical Technology Co., Ltd., (WSSAT). Sample powder (200 mesh) 
was placed in an oven at 105 ◦C for drying of 12 h. Then, 50 mg sample 
powder was weighed and placed in a Teflon bomb, and 1.5 ml of HNO3 
and 1.5 ml of HF were added to the bomb, which was sealed in a steel 
jacket and heated to 190 ◦C in the oven for 48 h to completely dissolve 
the sample. After cooling, the Teflon bomb was opened and placed on a 
hotplate at 140 ◦C and evaporated to incipient dryness, and the 1 ml 
HNO3 was added and evaporated to a second round of dryness. The 
resultant salt was redissolved by 1 ml of HNO3, 1 ml of Milli-Q water, 
and 1 ml internal standard solution of 1 ppm In, and the Teflon bomb 
was resealed and placed in the oven at 190 ◦C for >12 h. The final so
lution was diluted to 100 g with a mixture of 2% HNO3 for ICP-MS 
analysis. Analyses of four international standards (AGV-2, BHVO-2, 
BCR-2, and RGM-2) indicate that the analytical uncertainties for most 
trace elements are generally less than 5%. The detailed sample digestion 
procedure and the analytical precision and accuracy during ICP-MS 
analyses were the same as those described in Liu et al. (2008b). 
Whole-rock major and trace element data for samples and standards are 
listed in Table S2. 

3.3. Sr–Nd–Pb–Hf isotopic analyses 

Nine samples were selected for whole-rock Sr–Nd–Pb–Hf isotope 
analysis at the WSSAT. For the Sr–Nd isotopic analysis, approximately 
200 mg of the sample powder was completely dissolved in HF-HClO4 at 
200 ◦C for one week. Sr and Nd were separated using conventional ion- 
exchange columns, and Nd fractions were further separated using 
HDEHP columns. The procedural blanks were 200 pg for Sr and 30 pg for 
Nd. The measured 87Sr/86Sr and 143Nd/144Nd ratios were normalized to 
88Sr/86Sr = 8.3752 and 146Nd/144Nd = 0.7219, respectively. The 
measured values for the NBS987 standard yielded 87Sr/86Sr = 0.710243 
± 0.000010 (2SE, n = 4), and the GSB 04-3258-2015 standard yielded 
143Nd/144Nd = 0.512441 ± 0.000006 (2SE, n = 4). The USGS reference 
materials BCR-2 and RGM-2 gave results of 0.704999 ± 0.000007 (2SE, 
n = 1) and 0.704143 ± 0.000008 (2SE, n = 1), respectively, for 87Sr/86Sr 
and 0.512640 ± 0.000006 (2SE, n = 1) and 0.512793 ± 0.000006 (2SE, 
n = 1), respectively, for 143Nd/144Nd. These values are identical, within 
error of 0.03% of their recommended values (Thirlwall, 1991; Weis 
et al., 2006; Li et al., 2012, 2016a). 

For Pb isotopic determination, the whole rock powder was dissolved 
in Teflon vials with purified HF + HNO3 at 190 ◦C for >24 h and then 
separated using anion-exchange columns with diluted HBr and HCl as 
eluents. The procedural blank for Pb was 50 pg. Isotopic ratios were also 
determined using the Neptune Plus MC-ICP-MS. Repeated analyses of Pb 
isotopes for standard NBS981 yielded 208Pb/204Pb = 36.727 ± 0.002, 
207Pb/204Pb = 15.500 ± 0.001, and 206Pb/204Pb = 16.942 ± 0.001 
(2SE, n = 3). For the in-house Alfa Pb standard the values were 
208Pb/204Pb = 37.851 ± 0.002, 207Pb/204Pb = 15.597 ± 0.001, and 

206Pb/204Pb = 17.917 ± 0.001 (2SE, n = 3). The USGS reference ma
terials BCR-2 yielded results of 208Pb/204Pb = 38.741 ± 0.001, 
207Pb/204Pb = 15.627 ± 0.000, and 206Pb/204Pb = 18.758 ± 0.001 
(2SE, n = 1), and the RGM-2 yielded results of 208Pb/204Pb = 38.647 ±
0.002, 207Pb/204Pb = 15.621 ± 0.001, and 206Pb/204Pb = 18.933 ±
0.001 (2SE, n = 1). The measured standards and references were iden
tical within the error of the recommended values (Baker et al., 2004; 
Weis et al., 2006). 

For Hf isotopic analysis, approximately 200 mg of the powder was 
digested in Teflon bombs with a mixture of concentrated HNO3 + HF 
and dried on a hot plate. This was followed by the addition of concen
trated HNO3, HF, and HClO4 sealed in bombs and kept in an oven at 
190 ◦C. After cooling, the Teflon bomb was opened, and 1 ml HNO3 was 
added and evaporated to dryness. A modified ion-exchange single-col
umn LN-Spec resin was used for Hf separation. The procedural blank for 
Hf was 50 pg. Mass discrimination correction was performed via internal 
normalization to a 179Hf/177Hf ratio of 0.7325. The in-house AlfaHf 
standard measured during analysis gave an average 176Hf/177Hf ratio of 
0.282224 ± 0.000006 (2SE, n = 5), and the reference materials BCR-2 
and RGM-2 yielded 176Hf/177Hf ratios of 0.282855 ± 0.000007 (2SE, 
n = 1) and 0.283010 ± 0.000007 (2SE, n = 1), respectively, which are 
within the range of the recommended values (Weis et al., 2007; Chen 
et al., 2013). The whole-rock Sr–Nd–Pb–Hf isotopic data are shown in 
Table 1. 

4. Results 

The olivine grains have forsterite contents [Fo = 100*Mg/(Mg + Fe)] 
varying from 64.7 to 86.5 (Fig. S2), and most of them are in equilibrium 
with the whole rock, assuming the Fe–Mg partition coefficient (KD =

0.30 ± 0.03) between olivine and melt (Fig. S2; Roeder and Emslie, 
1970). Their CaO contents (0.1–0.26 wt%, Table S1) were slightly 
higher than those of typical mantle olivine (CaO < 0.1 wt%; Foley et al., 
2013), together with the euhedral and subhedral crystal shapes, sug
gesting that they were precipitated from magmas instead of being xen
ocrysts. In addition, they have high Ni (0.07–0.40 wt%, corresponding 
to 534–3104 ppm) and Zn (99–244 ppm) and varied Mn (0.10–0.26 wt 
%, corresponding to 767–1990 ppm) concentrations with 100*Mn/Fe 
ratios of 0.53–1.85 and 10,000*Zn/Fe ratios of 9.15–17.6. It should be 
noted that except for the Ni concentrations, other trace elements (e.g., 
Ca, Mn) of olivine presented here are acquired through LA-ICP-MS as 
these elements have concentrations that are too low to have acceptable 
precision by EPMA (uncertainty >10%) when measured by routine 
analysis (see section 3), which is also suggested by the poor correlations 
between data from EPMA and LA-ICP-MS (Fig. S3). Clinopyroxenes are 
mainly diopside (Wo36–48En27–39Fs6–18CaTs8–21) (Fig. S2) and have TiO2 
contents of 0.20–3.21 wt%, Al2O3 contents of 3.41–9.89 wt%, and Mg# 

values of 47.7–70.8. The compositions of feldspar vary from andesine to 
labradorite (An38–65) (Fig. S2). 

The Liangcheng basalts have SiO2 contents of 45.2 to 49.0 wt%, and 
high contents of alkali elements (K2O + Na2O) (4.27–7.38 wt%) and 
belong to the alkaline series (Fig. 3A). These rocks display various MgO 
contents (5.69–9.54 wt%), low CaO (6.70–9.36 wt%) and MnO 
(0.12–0.16 wt%), and high Fe2O3T (10.1–12.2 wt%) contents with 
correspondingly high Fe/Mn ratios (59.2–81.1). The TiO2 (1.77–2.43 wt 
%), Fe2O3T, and MnO contents are nearly invariant with decreasing 
MgO contents. The CaO/Al2O3 ratios positively correlate with the MgO 
contents for samples with MgO < 8 wt%, but show no obvious corre
lation for those with MgO ≥ 8 wt% (Fig. 3B). The Liangcheng basalts 
display ocean-island basalt (OIB) -type trace-element patterns, which 
are, enriched in large ion lithophile elements (LILEs) and light rare earth 
elements (LREEs) with positive anomalies in Nb, Ta, Sr, Ba, and negative 
anomalies in Th, and Pb (Fig. 4). These samples show radiogenic Sr 
isotopes (87Sr/86Sr = 0.703924–0.705688) and moderately depleted to 
slightly enriched Nd–Hf isotopes (143Nd/144Nd = 0.512539–0.512861, 
176Hf/177Hf = 0.282824–0.282999), with positive correlations in the 
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plot of 143Nd/144Nd vs. 176Hf/177Hf (Figs. 5A, B). They are distinct from 
Pacific MORB owing to their higher 207Pb/204Pb and 208Pb/204Pb 
compared to the standard 206Pb/204Pb and show similarities with Indian 
MORB (Figs. 5C, D). 

5. Discussion 

5.1. Alteration, contamination, and differentiation 

The post-magmatic alteration effect on the compositions of the ba
salts is neglected because of the low LOI values (< 3 wt%, Table S2) and 
overall freshness in hand specimens and thin sections. This could be 
further assessed by the correlation between LILEs (e.g., Rb, Sr, Ba, and 
LREE) and high field strength elements (HFSEs) (e.g., Zr and Hf), as both 
group elements are incompatible during mantle partial melting or 
crystallization (Bédard, 2006), and positive correlations would be 
observed if they are only controlled by magmatic processes (Polat et al., 
2002). In contrast, if the alteration were significant, the correlation 
would be disturbed because LILEs can be mobilized during alteration 
while HFSEs tend to remain immobile under similar conditions (Polat 
et al., 2002). The good correlation between the LILEs and HFSEs in the 
Liangcheng basalts suggests that the alteration was insignificant 
(Fig. S4), except for one sample (20GQZ-1) that may have suffered 
slightly alteration according to its petrological features (altered minerals 
and groundmass), the highest LOI (2.63 wt%) among collected basalts, 
and elevated Rb and Pb concentrations (Fig. S4). 

Crustal contamination is also negligible because most of the studied 
basalts have trace element patterns similar to the enriched mantle-type 
OIB with remarkably positive Nb–Ta anomalies, negative Th and Pb 
anomalies, high Nb/U, Ce/Pb, and low Zr/Nb ratios, in contrast with the 
continental crust (Figs. 4, S5, Table S2; Rudnick and Gao, 2014). The 
lack of correlations between isotopes (Sr, Nd, Hf) and MgO is also 
inconsistent with crustal contamination (Fig. S5), as the continental 
crust is characterized by low MgO content, radiogenic Sr and unradio
genic Nd–Hf isotopic compositions (Liu et al., 2004). 

The positive correlation between CaO and MgO contents implies the 
fractionation of clinopyroxene (Table S2). However, CaO variations may 
also be affected by source heterogeneity. Positive correlations between 
CaO and radio-isotopes (143Nd/144Nd, 176Hf/177Hf) are observed for 
basalts with high MgO contents (≥ 8 wt%), suggesting that the variation 
of CaO for these basalts may be affected by mantle source heterogeneity 
rather than magma differentiation (Fig. S6). Except for CaO contents, 
CaO/Al2O3 ratios and Sc concentrations are primarily controlled by 
clinopyroxene; thus, their variations can be used to evaluate the effect of 
clinopyroxene fractionation. Positive trends exist among CaO/Al2O3, Sc, 
and MgO in the samples with MgO < 8 wt%, but no obvious correlations 
are presented in samples with MgO ≥ 8 wt%, indicating negligible cli
nopyroxene crystallization for high MgO samples (Figs. 3B, C). The 
generally positive correlation between Ni and MgO reflects olivine 
removal throughout magma differentiation because of the compatibility 
of Ni in olivine from the alkaline basalts (Fig. 3D). In addition, the 
absence of plagioclase phenocrysts and weak Eu anomalies (Eu/Eu* =
0.98–1.06, where Eu/Eu* = EuN/(SmN*NdN)0.5; N, chondrite normal
ized) suggests that the plagioclase fractionation is minor (Fig. 4, 
Table S2). The consistent TiO2 and Fe2O3T with decreasing MgO also 
indicate insignificant fractionation of Fe–Ti oxides (Table S2). These 
results suggest that the high-MgO samples may have only experienced 
olivine fractionation. This conclusion is consistent with previous studies 
on regional Cenozoic basalts (Liu et al., 2008a; Xu et al., 2017). To 
minimize the effects of mineral fractionation, we chose rocks with MgO 
≥ 8 wt% to constrain their source lithologies and melting conditions. 

5.2. Source lithology 

Mineral (especially olivine) compositions (Sobolev et al., 2005; 
Herzberg, 2011; Foley et al., 2013) and whole-rock geochemical Ta
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contents (e.g., CaO contents, Herzberg, 2011) and ratios (Fe/Mn, Zn/Fe, 
FC3MS, FCKANTMS, Liu et al., 2008a; Le Roux et al., 2010; Yang and 
Zhou, 2013; Yang et al., 2019) have been proposed as useful tools to 
discriminate the source lithology of basalts. The olivine phenocrysts of 
the Liangcheng basalts display high Ni concentrations, and low Mn and 
Ca concentrations that are similar to olivine from typical pyroxenite- 
derived basalts, such as those from Koolau and Loihi, suggesting crys
tallization from pyroxenite melts (Figs. 6A, B, C; Sobolev et al., 2005; 
Herzberg, 2011; Foley et al., 2013; Shi et al., 2022). However, recent 
experimental studies showed that Ni and Mn partition coefficients be
tween olivine and melt are related to pressure and temperature condi
tions, which may cause Ni enrichment and Mn depletion in melt derived 
from high-pressure melting of a peridotite source (Matzen et al., 2017). 
This weakness can be improved by using additional indexes such as 
transition elements and their ratios (Mn, Zn, Fe, Zn/Fe, Mn/Zn, and Mn/ 
Fe; Howarth and Harris, 2017). The Zn/Fe, Mn/Zn, and Mn/Fe ratios for 
olivine grains of Fo > 80 from Liangcheng basalts straddle from the field 
of pyroxenite-peridotite mixed to pyroxenite source, suggesting a 
pyroxenite-bearing mantle source lithology (Figs. 6D, E, F). In addition, 
the whole-rock TiO2 and MnO contents of Liangcheng basalts show little 
variation during magma evolution and thus can be used to discriminate 
the source lithology via comparison with experimental data (Table S2). 
The studied basalts are characterized by high TiO2 contents and all fall 
into the field of pyroxenite (both silica-excess and silica-deficient) melts 
(Fig. 7A). Besides that, a whole-rock major composition-based indicator 
of FC3MS (FeO/CaO-3MgO/SiO2) proposed by Yang and Zhou (2013) 

has been suggested as useful to discriminate the source lithology of 
basalt. Yang and Zhou (2013) compiled experimental and natural data 
of peridotite and pyroxenite melts and suggested that the upper limit of 
FC3MS value for peridotite melts is 0.65, and higher FC3MS value for 
peridotite melts can only be reached by substantial clinopyroxene 
fractionation (> 30%), which is unrealistic for the Liangcheng basalts 
with high MgO contents (≥ 8 wt%) because they only experienced 
olivine fractionation. Therefore, the high FC3MS values (0.49–0.77) of 
the Liangcheng basalts may suggest contributions from pyroxenite melts 
(Fig. 7B). In addition, the recently proposed parameter, FCKANTMS (ln 
(FeO/CaO)-0.08*ln(K2O/Al2O3)-0.052*ln(TiO2/Na2O)-0.036*ln(Na2O/ 
K2O)*ln(Na2O/TiO2)-0.062*(ln(MgO/SiO2))3–0.641*(ln(MgO/ 
SiO2))2–1.871*ln(MgO/SiO2)-1.473) is also a useful index in discrimi
nating the source lithology of basalt, and olivine fractionation only 
causes limited variation (0–0.15) of this value (Yang et al., 2019). The 
Liangcheng basalts have much higher FCKANTMS (0.42–0.64) than 
those for peridotite melts (< 0.1) as shown in Figs. 7C, D, also indicating 
a major contribution from pyroxenite melting. The above evidence 
collectively suggests a pyroxenite-bearing mantle source lithology for 
the Liangcheng basalts. 

Discriminating the nature of the pyroxenite is of great importance 
before we gain knowledge about the melting conditions because 
different types of pyroxenite may have various mineral modes, phase 
relations, and melting behavior (Lambart et al., 2016). The nature of 
pyroxenite could be identified using whole-rock compositions since 
different types of pyroxenites (silica-deficient and silica-excess) would 

Fig. 3. (A) Total alkali (Na2O + K2O) vs. SiO2 contents (Le Bas et al., 1986); CaO/Al2O3 ratios (B), Sc concentrations (C), and Ni concentrations vs. MgO contents (D).  
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generate melts with contrasting compositions (Lambart et al., 2013). 
Here, we adopted a pseudo-ternary sub-projection consisting of a whole 
array of major elements to provide insights into the nature of the py
roxenite in the source of the studied basalts (Fig. 8). It clearly shows that 
the Liangcheng basalts with high MgO contents (≥ 8 wt%) are deficient 
in SiO2 and similar to experimental melts of silica-deficient pyroxenite, 
and addition of olivine (to recover the primary melt composition) would 
not drive these basalts into fields of silica-excess pyroxenite melts. 
Although experiments proposed that reacted melts between MORB- 
eclogite (silica-excess pyroxenite) partial melts and fertile peridotite 
could generate basalts with low silica and high alkali that are similar to 
natural alkaline basalts (Mallik and Dasgupta, 2012), we suggest such a 
scenario is not the case for the Liangcheng basalts since these basalts 
exhibit much lower TiO2 contents at similar MnO contents, indicating 
inconsistency with the reacted melts (Fig. 7A). As a consequence, we 
suggest that the pyroxenite in the source of the Liangcheng basalts is 
silica-deficient pyroxenite. 

5.3. Melting conditions of the pyroxenite-bearing asthenosphere 

Preferential melting of non-peridotite source lithology extracts latent 
heat from the ambient mantle and further facilitates the melting process, 
but suppresses the melting of the surrounding peridotite (Oliveira et al., 
2021). Consequently, the mass contribution of such low-solidus lithol
ogy (e.g., pyroxenite) to the melt overweighs its proportion in the 
mantle (Lambart et al., 2016). The complicated chemical and thermal 
processes make it difficult to recover the melting condition based on the 
bulk major-element compositions of primary magma acquired by 
reverse methods for single-source lithology (e.g., the addition or 
removal of olivine, Lee et al., 2009; Herzberg, 2011). Herein, we 
employed a forward-modeling method based on whole-rock incompat
ible trace-element compositions using REEBOX PRO (Brown and Lesher, 
2016) to explore the melting conditions and source characteristics. 

REEBOX PRO is a software package that can simulate the adiabatic 
decompression melting of heterogeneous mantle sources containing 
anhydrous peridotite (lherzolite), hydrous peridotite (lherzolite), 

Fig. 4. (A) Chondrite-normalized REE patterns; (B) 
primitive mantle-normalized spider diagrams. 
Normalizing data for the chondrite and primitive 
mantle are from Sun and McDonough (1989) and 
McDonough and Sun (1995), respectively. The data 
source for the average MORB is from Gale et al. 
(2013), the average HIMU, EM1, and EM2 are from 
Kawabata et al. (2011), Willbold and Stracke (2006) 
and Workman et al. (2004), respectively, and the 
lower continental crust (LCC) is from Rudnick and 
Gao (2014).   
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pyroxenite (three types: G2, MIX1G, and KG1 pyroxenite) and/or re
sidual harzburgite (Brown and Lesher, 2016; Brown et al., 2020). The 
key model inputs include the mantle potential temperature, lithospheric 
thickness, trace element abundances, isotopic composition, and water 
content of the source rocks. Assuming that all specified lithologies are in 
thermal equilibrium rather than chemical equilibrium, the program uses 
thermodynamic and experimental constraints to quantify their polybaric 
productivities (dF/dP) at discrete decompression steps (per 0.01 GPa) 
between the deepest solidus and the base of the lithosphere. The mineral 
model parameterizations of the solidus are based on experimental con
straints and thermodynamic modeling using Perple_X (Connolly, 1990, 
2005). Using experimentally constrained mineral modes, melting 
modes, and either temperature-dependent or static mineral-melt parti
tion coefficients, the model then calculates the compositions of instan
taneous melts generated by the incremental batch melting of each 
lithology during each decompression step. For each lithology, instan
taneous melts are mixed along the melting column to provide a “column- 
accumulated” melt composition at the top of the melting column. 
Finally, the bulk (aggregate) igneous crust thickness and composition 
are calculated by pooling all column-accumulated melts derived from all 
the lithologies (pooled melts) (Brown et al., 2020). 

Before the modeling, we need to point out that the factor of CO2 was 
not taken into account in the software, which may affect the results 
because the carbonated mantle source has been proposed to play an 
important role in forming the Cenozoic alkaline basalts in Central-East 

Asia (Zeng et al., 2010, 2021; Yang et al., 2012; Sakuyama et al., 
2013; Huang et al., 2015; Li et al., 2017; Wang et al., 2017; Xu et al., 
2018; He et al., 2019b; Cai et al., 2022; Zou et al., 2022). To explore 
whether CO2 is involved in the mantle source of the Liangcheng basalts, 
we used a SiO2 vs. CaO diagram for discrimination (Herzberg and Asi
mow, 2008, Fig. S7). The theory behind this method lies in the fact that 
CO2-bearing basalts are usually characterized by much lower SiO2 and 
higher CaO than CO2-free basalts (Herzberg and Asimow, 2008). The 
results show that the Liangcheng basalts plot in the region of CO2-free 
basalts, suggesting that the impact of CO2 on the studied basalts was 
minor (Fig. S7). This inference is supported by evidence that the nega
tive anomalies in Zr–Hf and Ti, which are typical features of CO2-bearing 
basalts, are not observed in the studied samples (Zeng et al., 2010). 
Although we could not rule out the possibility that CO2 had once been 
involved in the source region, for which case the melts gradually evolved 
from carbonatitic melt to carbonate silicate melt and eventually to 
alkaline basalts (Xu et al., 2020 and references therein), we suggest that 
in this situation the effect of CO2 on the composition of the basalts has 
been strongly diluted and therefore has an insignificant influence on the 
final melt compositions. 

After evaluating the CO2 impact, we conducted our modeling using 
the REEBOX PRO software. Four main controlling factors were consid
ered in the modeling: (1) mantle potential temperatures, (2) source 
water content, (3) source compositions (lithological proportions), and 
(4) final depths of melting (lithosphere-asthenosphere boundary). Grid 

Fig. 5. Whole-rock (A) 143Nd/144Nd vs. 87Sr/86Sr; (B) 176Hf/177Hf vs. 143Nd/144Nd; (C) 207Pb/204Pb vs. 206Pb/204Pb; (D) 208Pb/204Pb vs. 206Pb/204Pb diagrams. The 
areas for Indian MORB and Pacific MORB are taken from Xu and Zheng (2019), and data for FOZO (Cook-Austral), HIMU (St. Helena), EM1 (Pitcairn), and EM2 
(Samoa) are from the GEOROC database (http://georoc.mpch-mainz.gwdg.de/georoc/). The average Sr, Nd, Pb, and Hf isotopic compositions for depleted-MORB 
mantle (DMM) are from Workman and Hart (2005) and references therein. The data of ophiolites from the Neo-Tethys Ocean, Paleo-Tethys Ocean, and Paleo- 
Asian Ocean are compiled in Liu et al. (2015c). The mantle xenoliths from Hannuoba and Jining are compiled in Zhao et al. (2021). 
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research was then carried out to find a combination of parameters when 
the resultant melt composition best matched the studied basalts. The 
effects of a single parameter on the compositions of the resulting melts 
are shown in Fig. 9. After grid inspection, the best-fit combination ap
pears to be 80% lherzolite +20% silica-deficient garnet pyroxenite in the 

source, a final melting depth of ~2 GPa (corresponding to a lithospheric 
thickness of ~66 km), ~1380 ◦C mantle potential temperature, and ~ 
500 ppm source water content in the source (Fig. 10). Note that the 
silica-deficient pyroxenite here is KG1. In addition to KG1, the other 
silica-deficient pyroxenite incorporated in the software, MIX1G, has also 

Fig. 6. Ni concentrations (A), Mn concentrations (B), and Ca concentrations (C) vs. Fo for olivine grains in the Liangcheng basalts; (D) 100*Mn/Fe vs. 10,000*Zn/Fe 
ratios, (E) Mn vs. Zn concentrations and (F) Ni concentrations vs. Mn/Zn ratios diagrams for Liangcheng olivine phenocrysts. Olivine Ni data plotted in (A) is from 
EPMA, while the Mn and Ca data plotted in (B) and (C) are acquired by LA-ICP-MS. The compositions of olivines crystallized from peridotite melts calculated by 
Herzberg (2011) are shown for comparison. The calculation was based on a fertile peridotite source with Ni of 1,964 ppm, Ca of 24,657 ppm, and Mn of 1,007 Mn. 
The calculated olivines are for both primary magmas and derivative magmas produced by olivine fractionation. The filled fields are for calculated olivines of the 
primary magmas. The other numbered lines and fields are for calculated olivines from derivative magmas with different MgO contents (Herzberg, 2011). Fields for 
olivines that have been interpreted to be derived from pyroxenite, peridotite, and pyroxenite-peridotite mixed source are from Howarth and Harris (2017) and 
references therein, and for olivine from Pitcairn, Koolau, Loihi, MORB, and Komatiite are from Shi et al. (2022) and references therein. Data for olivine phenocrysts in 
Cenozoic alkaline basalts from Mongolia (Zhang et al., 2021), NE China (Chen et al., 2015a; Wang et al., 2015; Zhang and Guo, 2016; Pang et al., 2019; Liu et al., 
2022), North China (Xu et al., 2012b; Liu et al., 2015b; Li et al., 2016b; Xu et al., 2017; Hong et al., 2020, 2021), and SE China (Sun et al., 2017; Zeng et al., 2017) are 
illustrated in Table S4. 
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been considered. It can be observed that the results yielded by the 
MIX1G model show similar variations to those of the KG1 model when 
changing the parameters during modeling (Fig. S8). The best-fit model 
acquired using MIX1G as the end member shows identical final melting 
pressure and water content but a higher proportion of pyroxenite in the 
source and lower melting temperature than the KG1 model (Fig. 10). 
The best-fit conditions given by the MIX1G model do not fit well with the 
Liangcheng basalts compared to the KG1 model, which suggests MIX1G 
may not be an appropriate candidate. Such a result indicates that a 
pyroxenite with a high proportion of relatively refractory components, 
like KG1, is needed in the source of Liangcheng basalts because KG1 is a 
mixture of peridotite and pyroxenite and contains fewer fusible com
ponents than MIX1G (Kogiso et al., 1998). The estimated melting pres
sure and temperature align well with those calculated by whole-rock 
compositions (1384 ± 17 ◦C and 2.2 ± 0.2 GPa) (Figs. 11, S9; Lee et al., 
2009; Herzberg, 2011), and the predicted water content approximates 

those given by the minerals and whole-rock chemistry (550–759 ppm, 
see text in Supplemental Material, Figs. S10, S11, and Table S3), 
implying that our model is reliable. The melting temperature 
(~1380 ◦C) is significantly higher than the xenolith-based temperatures 
of the regional lithospheric mantle (< 1000 ◦C; Chen et al., 2001; Huang 
and Xu, 2010; Zhao et al., 2021), suggesting an asthenospheric origin. 
Since lithosphere may act as a passive mechanical barrier to continuous 
upwelling of the asthenosphere, the estimated final melting depth can be 
approximately treated as the melting pressure of these basalts (Niu et al., 
2011). It should be noted that the melting pressure (~2 GPa, corre
sponding to the depth of ~66 km) is slightly lower than the regional 
lithospheric thickness as constrained by geophysical observations (~80 
km, Chen et al., 2009a; Huang et al., 2009), which may be attributed to 
lithospheric thickening by asthenospheric thermal decay after basalt 
formation (Xu et al., 2004). 

Fig. 7. (A) Whole-rock TiO2 vs. MnO contents diagram. Sources of experimental data are identical to Liu et al. (2008a), and Ma et al. (2016). Reacted melts between 
MORB-eclogite and peridotite are from Mallik and Dasgupta (2012). The dark grey squares represent reacted melts obtained from the mixed runs while the light grey 
squares point to reacted melts acquired from the layered runs; (B) FC3MS values vs. La/Yb ratios. Variations of La/Yb ratios for experimental peridotite and py
roxenite melts are calculated through the batch melting model of Yang and Zhou (2013). The dashed lines with blue and purple cross represent Cpx fractional and 
equilibrium crystallization (FC and EC) by 10 wt% increments each step (Yang and zhou, 2013); FCKANTMS values vs. whole-rock Mg number (Mg#) (C) and ln 
(SiO2/(CaO + Na2O + TiO2)) (D) (Yang et al., 2019). All plotted basalts have high MgO contents (≥ 8 wt%) and plot on the CO2-free side in the CaO vs. SiO2 diagram 
(Fig. S7). Data for basalts from Mongolia (Barry et al., 2003; Chuvashova et al., 2007; Savatenkov et al., 2010; Hunt et al., 2012; Yarmolyuk et al., 2015; Zhang et al., 
2021), NE China (Chen et al., 2007; Chuvashova et al., 2007; Ho et al., 2008; Yan and Zhao, 2008; Zou et al., 2008; Xu et al., 2012a; Ho et al., 2013; Chen et al., 
2015b; Wang et al., 2015; Yu et al., 2015; Guo et al., 2016; Zhang and Guo, 2016; Togtokh et al., 2019; He et al., 2019b; Pang et al., 2019; Lei et al., 2020), North 
China (Tang et al., 2006; Chen et al., 2007; Liu et al., 2008a; Chen et al., 2009b; Zhang et al., 2009; Zeng et al., 2010, 2011, 2021; Wang et al., 2011; Xu et al., 2012b, 
2017; Sakuyama et al., 2013; Hong et al., 2020; Zou et al., 2022), and SE China (Zou et al., 2000; Ho et al., 2003; Zeng et al., 2013; Li et al., 2015, 2016c, 2020; Liu 
et al., 2016; Sun et al., 2017; Yu et al., 2019) are listed in Table S5. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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5.4. Recycled components in the mantle source 

It is widely accepted that recycled components were introduced in 
the mantle source of the Cenozoic basalts in Central-East Asia via sub
duction or delamination, and various types of recycled materials have 
been identified using geochemical and isotopic tools. These recycled 
components include continental crust, oceanic crust (both the upper and 
lower oceanic crust), and sediment (with or without carbonate) (Zeng 
et al., 2011; Xu et al., 2012a; Liu et al., 2015a, 2015b; Li et al., 2017). 
The Liangcheng basalts show positive Nb–Ta and negative Pb anomalies, 
in contrast with the continental crust (Rudnick and Gao, 2014). Instead, 
they are characterized by high Ce/Pb and Nb/U ratios, indicating the 
involvement of igneous oceanic crust. This is because subducted igneous 
oceanic crusts usually have high Nb/U and Ce/Pb ratios due to the 
preferential release of U and Pb relative to Nb and Ce during slab 
dehydration (Stracke et al., 2003). In addition, the absence of positive 
europium anomaly and positive correlation between Eu/Eu* and SiO2 in 
the Liangcheng basalts suggest insignificant plagioclase accumulation in 
the source, thus ruling out the possibility of the involvement of lower 
oceanic crust (cumulate gabbro) in the source because lower oceanic 
crust contains abundant plagioclase and has high SiO2 contents and 
relatively higher Sr, Eu concentrations than similarly incompatible el
ements (Xu et al., 2012a). Besides that, these basalts display enriched 
mantle-type OIB trace-element patterns and radiogenic Sr isotopic 
compositions, which may imply the incorporation of sediments into 
their source (Plank and Langmuir, 1998; Chauvel et al., 2008). To 
discriminate the types of incorporated sediments, we carried out quan
titative modeling using trace elements and isotopic systematics (Fig. 12). 
We chose the depleted-MORB mantle (DMM), altered oceanic crust, and 
several kinds of sediments as endmembers; it should be noted that we 
did not consider carbonate-bearing sediments because carbonate plays a 
minor role in the source of the Liangcheng basalts as we discussed in 

section 5.3. The modeling results suggest that both pelagic and terrig
enous sediments were involved in the mantle source of the Liangcheng 
basalts (Fig. 12). As a result, we conclude that recycled oceanic crust, 
pelagic and terrigenous sediments collectively contributed to the for
mation of Liangcheng basalts. These recycled enriched components 
melted and reacted with the ambient peridotite to form a silica-deficient 
pyroxenite-bearing mantle domain, which acted as a source lithology for 
the studied basalt. 

The Central-East Asian continent has experienced multiple subduc
tion events during the Phanerozoic (Windley et al., 2010). These sub
ductions involve the Paleo-Tethys oceanic crust and subsequent deep 
subduction of the Yangtze continental crust (> 200 Ma; Wu et al., 2009), 
the Paleo-Asian oceanic crust (540–200 Ma; Wan et al., 2018; Jing et al., 
2022), the Mongol-Okhotsk oceanic crust (> 120 Ma; Kravchinsky et al., 
2002; Van der Voo et al., 2015), and the (Paleo-) Pacific oceanic crust (<
180 Ma; Ma and Xu, 2021 and references therein). Discriminating the 
origin of recycled components is difficult because of the cumulative 
effects of different tectonic events. However, we compiled olivine 
chemistry, whole-rock geochemical and isotopic data of Cenozoic 
alkaline basalts from Central-East Asia (including NE China, North 
China, SE China, and Mongolia; Tables S4, S5) and we found that these 
basalts not only have similar source lithology but also show broadly 
overlapping isotopic compositions (Figs. 6, 7, 8, 12), suggesting that 
their mantle sources may share the same origins. Consequently, we 
propose that subducted oceanic crusts and sediments from different 
subduction episodes introduced various recycled components into the 
asthenospheric mantle. After long periods of mantle convection and 
mixing, recycled components of different origins are dispersed and may 
serve as mantle sources for the Liangcheng basalts as well as other 
Cenozoic alkaline basalts in Central-East Asia. We suggest that this 
scenario might explain the wide similarities in the source lithology and 
isotopic compositions of these basalts (Figs. 6, 7, 8, 12). 

5.5. Melting mechanism of the Liangcheng basalts and its implication for 
the generation of intraplate basaltic magmatism in Central-East Asia 

Cenozoic alkaline basalts beyond the BMW have been previously 
interpreted as derived from localized asthenospheric upwelling due to 
lithospheric rifting or delamination (Barry et al., 2003; Hunt et al., 
2012), large-scale convection related to mantle plume (Johnson et al., 
2005), or subduction of the Pacific plate or India-Eurasia collision (Li 
et al., 2018; Chen and Faccenda, 2019). The Liangcheng basalts are 
located in the North China Craton, which experienced craton destruc
tion during the Mesozoic (Zhu and Xu, 2019; Wu et al., 2019). Large- 
scale extension structures, lithospheric delamination or rifting, and 
associated magmatism occurred during this period (Ma and Xu, 2021), 
much earlier than the formation of the Cenozoic basalts. Therefore, 
asthenospheric upwelling triggered by lithospheric rifting or delami
nation is unlikely in the studied basalts. For the mantle plume hypoth
esis, the relatively low calculated mantle potential temperatures 
(<1400 ◦C), the absence of geophysical observations and geological and 
petrological evidence, such as positive thermal anomalies, progressive 
age migration, radiant mafic dykes, or high-Mg# picrite, show no signs 
for the presence of a mantle plume beneath the studied area. As a 
consequence, the mantle plume model is not a candidate. Recently, 
direct mantle melting induced by subduction of the Pacific slab (Xu 
et al., 2018; Chen and Faccenda, 2019) or India-Eurasia collision (Li 
et al., 2018; Zhang et al., 2021) has been frequently suggested to explain 
the formation of widespread Cenozoic basalts in Central and East Asia. 
However, the Liangcheng area is away from the western edge of the 
subducted Pacific plate, as revealed by seismic images (Fig. 1B; Huang 
and Zhao, 2006), and can hardly be reached by mantle flow induced by 
the India-Eurasia collision because of the obstruction of the thick Ordos 
lithosphere (Yu et al., 2021). As a result, these basalts are unlikely to be 
directly linked to these two subduction events. Based on the above 
discussion, we suggest that an alternative melting mechanism is 

Fig. 8. Pseudoternary sub-projections for the Liangcheng basalts that only 
experienced olivine fractionation (Tormey et al., 1987; Grove, 1993). The 
predicted plagioclase (Pl), spinel (Sp), and garnet (Gt) lherzolite multiple 
saturation points (MSPs) as a function of increasing pressure from 1 atm to 4.0 
GPa are also shown for comparison. Pl and Sp lherzolite MSPs are calculated 
based on the model of Till et al. (2012) and the calculation of Gt lherzolite MSPs 
is according to Grove et al. (2013). The pressure range for the calculation of Pl, 
Sp, and Gt lherzolite MSPs is 1 atm to 1.4 GPa, 1.4 to 2.4 GPa, and 2.4 to 4GPa, 
respectively. Mg# = 0.73, NaK# = 0.283 and 0.515, P2O5 = 0.7 wt% were used 
for the calculation. The three segments of each trend show compositional 
change of MSPs for Pl, Sp, and Gt lherzolite facies with increasing pressure. 
Data for experimental melts from silica-excess (SE) and silica-deficient (SD) 
pyroxenites as well as harzburgite are compiled in Liu et al. (2008a), and Ma 
et al. (2016). Data for basalts from Mongolia, NE China, North China, and NE 
China are shown in Table S5, and data sources are the same as those in Fig. 7. 
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required to account for the generation of these basalts. 
Edge-driven convection due to steps in the lithospheric structure/ 

thickness combined with plate movement could be a feasible mechanism 
to explain the origin of the Liangcheng basalts. The lithosphere in the 
study area probably thinned before the basalt eruption based on the 
compositional transition from Mesozoic basalts to Cenozoic basalts (Guo 
et al., 2014). This inference is supported by the absence of garnet- 
bearing xenoliths (Zhao et al., 2021), the calculated low melting pres
sure of our samples and regional xenolith-bearing basalts (Xu 
et al.,2017), and the present lithospheric thickness determined by sur
face wave tomography (~80 km; Chen et al., 2009a; Huang et al., 2009). 
In addition, S-receiver function images have revealed that the litho
spheric thickness of the western NCC is characterized by significant 
lateral variations, which is 200 km in the Ordos block and sharply 
thinned to 80 km in the Yinchuan-Hetao and Shaanxi-Shanxi rift areas 
over a lateral distance of <200–400 km (Chen et al., 2009a). Such 
abrupt and significant changes in lithospheric thickness, combined with 
the disturbance from deep subduction of the Pacific plate, would effi
ciently cause edge-driven convection of the asthenosphere beneath the 
NCC, especially if the viscosity of the asthenospheric mantle was low
ered by melts and volatiles released from the Pacific plate, as has been 
suggested by a recent numerical modeling study (Sun and Liu, 2023). 
Since the Liangcheng area locates in the joint of the Yinchuan-Hetao and 

Shaanxi-Shanxi rift system with a thin lithosphere and is adjacent to the 
Ordos block, it is, therefore, in a propitious tectonic situation to trigger 
edge-driven convection. In this case, decompression melting of the 
asthenospheric mantle would occur when mantle convection drives 
fusible mantle domains from areas with relatively thick lithosphere to 
those that have thin ones. 

The Liangcheng basalts share many similarities with many other 
Cenozoic alkaline basalts in Central-East Asia, especially those with high 
MgO (≥ 8 wt%) and plotted on the CO2-free side in the CaO vs. SiO2 
diagrams (Fig. S7). These similarities include: 1) the geological distri
bution patterns in which these basalts are preferentially developed along 
deep major faults or weak zones between stable blocks (Fig. 1A); 2) they 
all have silica-deficient pyroxenite in the source (Figs. 6, 7, 8); 3) they 
yield low melting pressure (Fig. 11, <3 GPa); 4) similar recycled com
ponents such as oceanic crust and sediment (both pelagic and terrige
nous) existed in their mantle source (Fig. 12). Although some basalts 
with extreme geochemical signatures (nephelinites and potassic/ultra
potassic basalts) may have distinct origins (mantle transition zone, 
Sakuyama et al., 2013; Wang et al., 2017; Xu et al., 2020; Zeng et al., 
2021), most of the alkaline basalts in Central-East Asia generally have 
overlapping geochemical features and similar source components and 
melting conditions (Figs. 6, 7, 11, 12). These characteristics are difficult 
to reconcile with those of previous models, including mantle plumes, 

p

Fig. 9. Effects of mantle potential temperature, water contents, source lithologies, and final depth of melting (lithosphere-asthenosphere boundary, LAB) on the 
modeled melts. Also plotted is the average composition of the Liangcheng basalts (MgO ≥ 8 wt%). (A) the controlled parameters are source water content (500 ppm), 
source lithologies (80% PM + 20% KG1), potential temperature (1380 ◦C) and final melting pressure (2 GPa); (B) the controlled parameters are source water content 
(500 ppm), source lithologies (80% PM + 20% KG1) and final melting pressure (2 GPa); (C) the controlled parameters are source water content (500 ppm), potential 
temperature (1380 ◦C) and final melting pressure (2 GPa); (D) the controlled parameters are source lithologies (80% PM + 20% KG1), potential temperature 
(1380 ◦C) and final melting pressure (2 GPa). PM: primitive mantle (McDonough and Sun, 1995), KG1: silica-deficient pyroxenite (inserted in the REEBOX PRO 
program, Brown and Lesher, 2016). Abbreviations: Tp, potential temperature; LAB, lithosphere-asthenosphere boundary. The final melting depth is controlled by the 
lithospheric thickness and can be approximated to the thickness of the LAB (Niu et al., 2011). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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lithospheric rifting or delamination, or plate subduction. Instead, these 
similarities are likely the result of decompression melting of small-scale 
mantle convection due to regional lithospheric thickness variations. This 
proposal is consistent with recent studies suggesting that small-scale 
mantle convection driven by regional lithospheric thickness variations 
may have occurred beneath SE and NE China (Xu et al., 2022; Zhou 

et al., 2023). Similar small-scale convection has also been detected in the 
Baikal rift zone of Central Asia by geophysical observations and pro
posed to account for the intraplate magmatism in regions with thin 
lithosphere and sharp thickness variations, such as Southeast Australia, 
North America, and West Africa (Missenard and Cadoux, 2012; Davies 
and Rawlinson, 2014; Ballmer et al., 2015). Based on the above 

Fig. 10. Modeled melt compositions that best fit the averaged Liangcheng basalts (MgO ≥ 8 wt%) (Brown and Lesher, 2016). KG1 and MIX1G represent the end- 
member of silica-deficient pyroxenite and PM represents the primitive mantle. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 11. A mole% pseudo ternary projection from or 
toward olivine into the CS-MS-A plane (Herzberg, 
2011). The projection code follows O’Hara (1968), 
and the calculation method of cotectics is from 
Herzberg (2011). Abbreviations: L-liquid, Ol-olivine, 
Q-quartz, Cpx-clinopyroxene, Opx-orthopyroxene, 
Gt-garnet. All plotted basalts have high MgO con
tents (≥ 8 wt%) and plot on the CO2-free side in the 
CaO vs. SiO2 diagram (Fig. S7). Data for basalts from 
Mongolia, NE China, North China, and NE China are 
shown in Table S5, and data sources are identical to 
those in Fig. 7.   
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considerations, we suggest that edge-driven convection may be ubiqui
tous beneath Central-East Asia and probably plays an important role in 
the formation of pervasive Cenozoic small-volume alkaline basalts. 

6. Conclusions 

We conducted comprehensive geochemical studies and thermody
namic modeling of the Liangcheng basalts to explore the source char
acteristics and melting mechanisms of continental intraplate alkaline 
basalts beyond the Big Mantle Wedge. These basalts have a silica- 
deficient pyroxenite-bearing mantle source (20% silica-deficient py
roxenite +80% peridotite) with melting pressures and temperatures of 
~2GPa and 1380 ◦C, respectively. Considering the relatively low 
melting pressure, regional lithospheric thickness variations, and tec
tonic history, we propose that edge-driven convection could be a likely 
mechanism for the studied basalts. Similar source characteristics, 
melting conditions, and geological distribution patterns between the 
Liangcheng basalt and many other regional Cenozoic alkaline basalts, 

combined with similar lithospheric thickness variations observed 
beneath these basalts, suggest that edge-driven convection may be 
ubiquitous beneath Central-East Asia and that such a melting mecha
nism could serve as a major driving force for widespread continental 
intraplate basaltic magmatism. 
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Fig. 12. (A) ƐNd vs. Hf/Sm, (B) ƐHf vs. Hf/Sm, (C) ƐNd vs. Ba/Nb, (D) ƐHf vs. Ba/Nb diagrams for the Liangcheng basalts. DMM is from Workman and Hart (2005); 
Altered oceanic crust (AOC) is from Rehka and Hofmann (1997) and Guo et al. (2009); Pelagic sediments from the western Pacific and Indian Ocean are according to 
Cousens et al. (1994) and Rehka and Hofmann (1997), respectively. Terrigenous sediment is from Wedepohl (1995) and Chauvel et al. (2014). Data for Cenozoic 
alkaline basalts from Mongolia, NE China, North China, and NE China are listed in Table S5, and data sources are the same as those in Fig. 7. 
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