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A B S T R A C T   

The Tarim Block, one of the three largest cratons in China, plays an important role in the reconstruction of the 
Rodinia supercontinent. Knowledge of the Neoproterozoic tectonic evolution of the Tarim Block, especially the 
tectonic transition from convergence to rifting, remains unclear. The Aksu terrane, an integral part of the Tarim 
Block, is marked by the occurrence of Neoproterozoic blueschists, conglomerates, and mafic rocks that may 
provide important constraints on its tectonic history. We present an integrated study involving detailed field 
observations, whole-rock geochemistry, and zircon U-Pb geochronology for rhyolitic clasts in a Neoproterozoic 
conglomerate, a syenite pluton and mafic rocks in the Aksu region. Zircon U-Pb dating of the rhyolite yielded a 
crystallization age of 840 ± 4 Ma. Geochemically, the rhyolite is characterized by enrichment of light rare earth 
elements and depletion of high field strength elements, indicating a subduction-related arc setting. Syenites 
interspersed with mafic intrusions were crystallized at ~755 Ma, representing fractional crystallization products 
from intra-plate mantle-derived basaltic magma. Based on a compilation of previous studies, we find that the 
Late Neoproterozoic–Early Cambrian mafic rocks in the Aksu region can be divided into three phases. Phase I 
mafic intrusions (~760–745 Ma) occurring as dikes intruded into the blueschist-bearing Aksu Group. Phase II 
mafic intrusions (~755 Ma) intruded into the Neoproterozoic Qiaoenbulake Formation. Phase III mafic rocks 
(~520 Ma) are sills or basalts hosted within the Sugaitebulake Formation. Detailed studies suggest that sub-
duction of oceanic lithosphere in the Aksu area persisted until at least ~840 Ma. The transition from ocean- 
continent subduction to continental extension took place around ca. 760 Ma. At 755 Ma, the northwestern 
Tarim region experienced significant extension.   

1. Introduction 

Rodinian crustal fragments in China consist primarily of the North 
China, South China, and Tarim Blocks along with myriad micro-
continents. The Tarim Block in northwestern China hosts the Tarim 
Basin with an area of >560,000 km2. It is fringed by mountain ranges 
and intermontane basins including the Tianshan belt, Kuluketage, Aksu, 
Tiekelike, and Altyn blocks along its northern, northeastern, north-
western, southwestern, and southeastern margins, respectively (Fig. 1). 
The Precambrian crystalline basement of the Tarim Block is overlain by 

3–6 km of Phanerozoic-aged unmetamorphosed sedimentary cover (Jia, 
1997). The Tarim Block has an early Archean nucleus intruded by late 
Archean to Paleoproterozoic igneous rocks (Hu and Wei, 2006; Lu et al., 
2008; Shu et al., 2011; Long et al., 2010, 2011a; Zhang et al., 2012a, 
2012b, 2013a, 2013b; Xu et al., 2013a; Ge et al., 2018, 2020; Cai et al., 
2018; Lv et al., 2020). There is a general agreement that the ~2.1–1.8 Ga 
orogenic event in Tarim corresponds to the assembly of the Paleo- 
Mesoproterozoic Columbia or Nuna supercontinent (e. g., Zhang et al., 
2007, 2012b; Shu et al., 2011; Zhu et al., 2011; Lei, et al., 2011; Long 
et al., 2012; Ma et al., 2012, 2013, 2014; Wu et al., 2012; Zhao and 
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Cawood, 2012; Xu et al., 2013a; Gao et al., 2015; Ge et al., 2014a, 
2014b, 2015; Wang et al., 2014a, 2014b; Cai et al., 2020). The ~1.75 Ga 
magmatic episode in Tarim reflects an early breakup event of the 
Columbia supercontinent (Yu et al., 2013; He et al., 2013). 

The Neoproterozoic tectonic evolution of the Tarim Block is 
contentious. One of the controversial topics pertains to the origin and 
tectonic setting of Early Neoproterozoic granitoids (e. g., Xu et al., 2005, 
2013a, 2013b; Zhang et al., 2006, 2007, 2009a, 2011; Lu et al., 2008; 
Shu et al., 2011; Long et al., 2011b; Wu et al., 2012, 2018; Wang et al., 
2015; Yu et al., 2019; Peng et al., 2019). Were these granitoids related to 
continent–continent collision during the assembly of Rodinia super-
continent (e.g., Zhang et al., 2006, 2011; Xu et al., 2005, 2013a; Lu et al., 
2008; Long et al., 2011b; Shu et al., 2011; Wu et al., 2012) or were they 
related to a circum-supercontinent subduction at the periphery of 
Rodinia (Ge et al., 2016; Cai et al., 2019)? These issues arise, in part, due 
to the lack of a precise location for Tarim within Rodinia (Meert, 2014; 
Wen et al., 2017; Wang et al., 2020; Ren et al., 2020). 

The Middle to Late Neoproterozoic igneous rocks (most of which are 
mafic) are commonly considered to have been formed during rifting in 
the Tarim Block (Xu et al., 2005, 2013a, 2013b; Zhang et al., 2006, 
2007, 2009a, 2009b, 2011, 2012a, 2012c, 2012d; Zhu et al., 2008; Lu 
et al., 2008; Long et al., 2011a; Shu et al., 2011; Wang et al., 2010, 
2014c, 2015; Lei et al., 2013; Ge et al., 2016; Wu et al., 2018). However, 
knowledge of the Neoproterozoic tectonic transition from convergence 
to rifting remains unclear. Herein, the second controversy we hope to 
address in this paper is to establish the timing and mechanism for the 
transition from an ocean-continent subduction-related convergent 
regime to an extensional regime. 

The Aksu terrane is located in the northwestern portion of the Tarim 
Block, where Precambrian rocks are well exposed (Figs. 1 and 2). The 
presence of Neoproterozoic blueschists in the Aksu region, indicates 
subduction and accretion processes occurred along the northwestern 
margin of the Tarim Block during the Neoproterozoic (Liou et al., 1989, 
1996, 2004; Nakajima et al., 1990; Zhu et al., 2008; Zhang et al., 2009a, 
2012c; Yong et al., 2013; Lu et al., 2018). Some Late Neoproterozoic 
mafic rocks, especially basalts, mafic dikes and sills, formed in an 

continental rift setting in the Aksu and Kuluketage areas (e. g., Liou 
et al., 1989, 1996, 2004; Nakajima et al., 1990; Zhu et al., 2008; Zhang 
et al., 2009a, 2009b, 2012c; Yong et al., 2013). Herein, we conducted 
integrated analyses on Neoproterozoic igneous samples including 
rhyolite, syenite, and mafic rocks in the Aksu region. Our results placed 
new constraints on the tectonic transition from Neoproterozoic oceanic 
subduction to continental rifting in the northwestern Tarim Block. 

2. Geological setting and field descriptions 

In Aksu region, the Precambrian rocks comprise the metamorphic 
Aksu Group and unmetamorphosed Neoproterozoic sequences. The 
Aksu Group includes blueschist, greenschist and metagreywacke, 
intruded by mafic dikes. The Neoproterozoic sequences consist of the 
Qiaoenbulake (or Qiaoenbrak), Yuermeinake (or Yuermeinak), Sugai-
tebulake (or Sugetbrak), and Qigebulake (or Qigebrak) Formations from 
oldest to youngest (Figs. 2 and 3). 

The Aksu Group is best exposed in the Aksu and Wushi regions 
(Figs. 1 and 2). The peak metamorphic condition of Aksu blueschist has 
been estimated to be 350–450 ◦C and 5.5–7.0 kbar (Liou et al., 1996). 
The Aksu Group is significantly deformed (Fig. 4) with foliations 
(Fig. 4a–c, e–g), lineations (Fig. 4d) and folds (Fig. 4a and h). In the 
western and southern areas of Aksu, a series of NE-SW trending folds 
range from macroscopic to 10-km-wavelength in scale (Figs. 2 and 4a). 
NW-SE striking and steeply dipping (65–90◦) unmetamorphosed mafic 
dikes cross-cut the large-scale folds (Fig. 4a) and other deformed rocks in 
Aksu Group (Figs. 2 and 4b and d). The detrital zircon U-Pb, whole-rock 
Sm-Nd and Ar-Ar dating results provided various ages for the blueschist 
protolith, ranging from ~890 to 730 Ma (e.g., Zhang et al., 2009a; Zheng 
et al., 2010; Yong et al., 2013; Lu et al., 2018; Xia et al., 2019). An 
40Ar/39Ar age of 750 Ma from the Aksu schists, constrains the meta-
morphic age of the Aksu blueschist to ~750 Ma (Yong et al., 2013). 
Zircon U-Pb and Ar-Ar studies constrain the timing of dike emplacement 
to ~760 Ma (Zhang et al., 2009a; Xia et al., 2019) and to 745 Ma (Lu 
et al., 2018), respectively. 

The Qiaoenbulake Formation (1600–2040 m in thickness) consists of 

Fig. 1. Simplified geological map of the Tarim Block and adjacent area (modified from Xu et al., 2013a) showing sampling locations. The inset map shows the 
location of the Tarim Block, adjacent to the Tibetan Plateau. 
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~2 km of marine sandstone and conglomerate (Gao and Chen, 2003; 
Gao et al., 2013; Yang et al., 2014; Wu et al., 2018; He et al., 2021) 
(Figs. 2 and 3) and has a maximum depositional age of ~781 Ma (He 
et al., 2014). In some locations, the Qiaoenbulake Formation is slightly 
metamorphosed. It was previously regarded as the lowest unit within the 
unmetamorphosed Neoproterozoic sequence. A ~900 Ma andesite with 
arc affinities has been reported beneath the Qiaoenbulake Formation 
(He et al., 2019a). In the southern Wushi area, a large mafic intrusion 
emplaced into the Qiaoenbulake Formation (Figs. 2, 5a–c). Syenite 
plutons and veins occur near the mafic rocks (Figs. 2, 5a–c). No sharp 
contact or obvious chilled margin exists between the mafic and syenite 
plutons (Figs. 2, 5a–c), suggesting that they are coeval and represent a 
suite of bimodal igneous rocks in the Aksu region. 

The Yuermeinake Formation unconformably overlies the Qiaoen-
bulake Formation and is composed of <70 m-thick glacial diamictites, 
including poorly sorted sandstone and conglomerate (Figs. 2, 3, 5d; Gao 
and Chen, 2003; Wen et al., 2015; Wu et al., 2018). Clasts within the 
conglomerate, including schist, sandstone (Fig. 5e), and volcanic rocks 
(Fig. 5f). The clasts are typically large (up to 1.5 m) and angular 
(Fig. 5e–f), suggesting derivation from a nearby source. 

The Yuermeinake Formation in the Wushi area and the southern 
Aksu region, is unconformably overlain by the Sugaitebulake Formation 
(Figs. 2, 3, 4a–b, e–f, 5d). The Sugaitebulake Formation is ~400–450 m 
in thickness and consists of a basal conglomerate (alluvial fan), fluvial 
and lacustrine facies sandstone and siltstone formed in a non-marine 
sedimentary environment (Turner, 2010). Some basalt layers occur in 
the Sugaitebulake Formation in the southern Aksu and southern Wushi 
areas (Figs. 2 and 5g–j). Mafic sills locally intrude the Sugaitebulake 
Formation (Figs. 2, 3, 5k–m). In contrast, mafic dikes in the Aksu Group 
do not intrude the Sugaitebulake Formation (Fig. 4a–b). The crystalli-
zation ages of the basalts/mafic sills in the Sugaitebulake Formation 
were reported to be ~783 Ma (Zhang et al., 2012c) or ~615 Ma (Xu 

et al., 2013b) based on zircon U-Pb analyses. Considering the 
morphology characteristics, the zircons were probably xenocrysts, and 
the crystallization age of the mafic rocks might be younger than (783 Ma 
or 615 Ma) (e. g., Lu et al., 2018). Ar-Ar dating results constrain the 
crystallization timing of the basalts/sills in the Sugaitebulake Formation 
(MI-IIIs) to ~520 Ma (Lu et al., 2018). 

For convenience, we refer to the mafic dikes in the Aksu Group 
(Figs. 2, 3, 4a–b, d), the mafic pluton in the Qiaoenbulake Formation 
(Figs. 2, 3, 5a–c), and the basalts/mafic sills in the Sugaitebulake For-
mation (Figs. 2, 3, 5g–m) as phase I mafic intrusions (MI-Is), phase II 
mafic intrusions (MI-IIs) and phase III mafic intrusions (MI-IIIs), 
respectively. 

3. Petrography 

In this study, we collected rhyolite clasts from a conglomerate within 
the Yuermeinake Formation (Fig. 5f). The volcanic clasts are large (>10 
cm in length) and porphyritic in texture. The rhyolite is composed of 
plagioclase (50–60%), quartz (30–35%) and hornblende (5%) 
(Fig. 6a–b). 

MI-Is dikes are composed of feldspar (50–60%), clinopyroxene 
(30–35%) and hornblende (5–10%), with a few accessory minerals such 
as magnetite and zircon (Fig. 6c). The MI-IIs are medium- to coarse- 
grained with gabbroic texture (Fig. 6d). Mineral assemblages are 
plagioclase (45–55%), clinopyroxene (30–35%) and Fe-Ti-oxide (5%), 
with rare zircon and apatite (Fig. 6d). The MI-IIIs are porphyritic or 
diabasic porphyritic texture (Fig. 6e–h), and consist of plagioclase 
(55–60%) and clinopyroxene (25–30%), with subordinate amphibole, 
biotite, orthopyroxene, and minor accessory Fe oxides (Fig. 6e–h). The 
syenite samples are medium- to coarse-grained, equigranular and 
consist of orthoclase (70–75%), clinopyroxene (10–15%), and quartz 
(5%) (Fig. 6i–j). 

Fig. 2. Simplified geological map of the Aksu region (modified after XBGMR, 1966) showing the sampling locations.  
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4. Analytical methods 

Zircon U–Pb dating was conducted by laser-ablation inductively- 
coupled-plasma mass spectrometry (LA-ICP-MS) after cath-
odoluminescence (CL) imaging. The LA-ICP-MS analyses were carried 
out at the Institute of Mineral Resources, Chinese Academy of Geological 
Sciences (CAGS), Beijing, China. We use FEI PHILIPS XL30 SFEG and 
Thermo Finnigan Neptune MC-ICP-MS and Analyitik Jena PQMS Elite 
ICP-MS instruments. Detailed operating conditions for the laser ablation 
system and the ICP-MS instrument and data reduction follow the 
methodology in Hou et al. (2007) and Hou et al. (2009). The off-line 
selection and integration of background and signals, and time-drift 
correction and quantitative calibration for U-Pb dating were per-
formed using ICPMSDataCal (Liu et al., 2010). Zircon GJ-1 was used as 
the external standard, with preferred U-Th-Pb isotopic ratios from 
Jackson et al. (2004). The uncertainty of the preferred values (0.5%) for 
the external standard GJ-1 was propagated into the possibilities for the 
analyzed samples. U, Th, and Pb concentrations of zircon were cali-
brated using NIST 610. Concordia diagrams and age calculations were 
conducted using Isoplot/Ex_ver3 (Ludwig, 2003). The detailed 
geochronological results are listed in Table S1. 

Whole-rock major and trace element concentrations were obtained 
using X-ray fluorescence (XRF) and ICP-MS, conducted at the National 
Research Center for Geoanalysis, CAGS. Major elements analyzed by 
XRF have analytical uncertainties of <5%. Trace elements were 

separated using cation-exchange techniques and have analytical un-
certainties of 10% (element concentrations <10 ppm) and ~5% 
(element concentrations >10 ppm) (Zeng et al., 2012). 

Sr-Nd isotopic compositions were determined at the Beijing Createch 
Testing Technology Co., Ltd. Samples were dissolved in HNO3 and HCl 
for Sr or Nd purification. Sr was separated and purified using Sr-Spec 
(Triskem, 100–150 μm) resin. Sr-Nd was separated by conventional 
cation-exchange technique. Isotopic compositions of Sr and Nd were 
measured using a Thermo Fisher Scientific Neptune Plus MC-ICP-MS. Sr 
and Nd ratios were corrected for instrumental mass fractionation based 
on 88Sr/86Sr = 8.375209 and 146Nd/144Nd = 0.7219, respectively. The 
detailed analytical methods are described in Yang et al. (2010). For 
accuracy monitoring, the Sr isotope standard NBS 987 and Nd isotope 
standard GSB-Nd were tested and yielded an average 87Sr/86Sr =
0.710248 ± 10 (2SD, n = 17) and an average 143Nd/144Nd = 0.512179 
± 18 (2SD, n = 21). 

5. Analytical results 

5.1. Zircon U–Pb dating 

One rhyolitic clast sample (18X131) in the Yuermeinake Formation 
and two syenite samples (HSG46 and HSG47) (Fig. 2) were dated 
through zircon LA-ICPMS U-Pb dating (Table S1). Representative zircon 
CL images and corresponding analytical spots are shown in Fig. 7. 

Zircon grains in the rhyolitic clast sample (18X131) are euhedral and 
prismatic in shape, 50–200 μm in length, and exhibit oscillatory zoning 
as well as high Th/U ratios (0.3–1.8). A total of 20 analyses yielded a 
weighted mean 206Pb/238U age of 840 ± 4 Ma (n = 20, MSWD (mean 
squared weighted differences) = 0.1) (Fig. 7a and b). This age is inter-
preted as the crystallization age of the rhyolite. 

Nineteen and eighteen zircon grains from the samples HSG46 and 
HSG47 were analyzed, respectively. These zircon grains are prismatic 
(~60–200 μm long) with aspect ratios of 1:1–2:1, showing clear oscil-
latory zoning. Th/U ratios range from 0.7 to 2.2. These observations are 
indicative of magmatic origin (Hoskin and Schaltegger, 2003). A total of 
19 zircon grains from HSG46 yielded a weighted mean 206Pb/238U age of 
754 ± 4 Ma (MSWD = 0.3) (Fig. 7c and d) and 18 zircon grains from the 
HSG47 yielded a weighted mean 206Pb/238U age of 755 ± 5 Ma (MSWD 
= 0.3) (Fig. 7e and f). These are crystallization ages of the syenites. 

5.2. Whole-rock geochemistry 

Analysis of major and trace elements reveals that the rhyolite clasts 
from the Youermeinake Formation have SiO2 contents of 71 wt% (Figs. 8 
and 9) and K2O + Na2O contents of 6 wt%, and plot in the rhyolite field 
on the (K2O + Na2O)/SiO2 diagram (Fig. 8). Based on the molar ratios of 
Al2O3/(CaO + Na2O + K2O) (A/CNK) and Al2O3/(Na2O + K2O) (A/NK), 
the rhyolites are metaluminous (Table S2). These two samples have 
similar chondrite-normalized REE patterns and are characterized by 
enriched light rare earth elements (LREEs) ([La/Yb]N values are 6.59 
and 6.73, respectively), flat HREEs and slightly negative Eu anomalies 
(Eu/Eu* = 0.8) (Fig. 10a). In the primitive mantle-normalized trace 
element diagram (Fig. 10b), they show depletion in high field strength 
elements (HFSEs) such as Nb, Ta and Ti compared to Zr and Hf, indi-
cating the concentration of residual amphibole and Ti-bearing minerals 
in the magmatic source. 

Three samples (12T1031, 12T1032 and 12T1033) of mafic dikes in 
the Aksu Group (MI-Is) plot in the alkaline series field on the diagram of 
K2O + Na2O versus SiO2 (Fig. 8). The major oxides Ti, total Fe, Ca and P 
showed a decreasing trend with increasing SiO2 (Fig. 9). The MI-Is have 
total rare earth element (REE) contents of 237–255 ppm and are 
enriched in large-ion lithophile elements (LILE) such as Rb, Ba, and Th, 
depleted in HFSEs with marked negative Nb and Ta anomalies (Fig. 10c 
and d). Two MI-IIs samples (HSG31 and HSG36) and five MI-IIIs samples 
(HSG12, HSG15, HSG18, HSG19 and HSG110) plot in the alkaline field 

Fig. 3. Simplified stratigraphic column of the Neoproterozoic to Early 
Cambrian in the Aksu region (modified after Turner, 2010). 
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Fig. 4. (a) Satellite images of the western Aksu (a) and Wushi (b) regions, showing the deformation features of the Aksu Group and the relationship between the two 
phases of mafic intrusions; (c) Aksu Group in western Aksu area; (d) Mafic dikes (MI-Is) in the Aksu Group, cutting the deformed schist in Wushi area; (e–f) The 
contact relationship between the underlying Aksu Group and the overlying Sugaitebulake Formation; (g) Aksu Group in Wushi area; (h) Folds in the Aksu Group 
schist in southern Aksu area. 
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Fig. 5. (a–c) Coeval syenite and MI-IIs near the Sugaitebulake village (southern Wushi area); (d) The Sugaitebulake Formation unoconformably overlying the 
Yuermeinake Formation; (e) The conglomerate in the Yuermeinake Formation; (f) Rhyolite clast in the Yuermeinake Formation; (g–j) Basalt layers (MI-IIIs) in the 
Sugaitebulake Formation; (k–m) Mafic sills (MI-IIIs) in the Sugaitebulake Formation (southern Aksu area). 
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Fig. 6. Photomicrographs of representative igneous samples. (a–b) Rhyolites; (c) Mafic dikes (MI-Is) in the Aksu Group; (d) Mafic intrusions (MI-IIs) in the 
Qiaoenbulake Formation; (e, g–h) Basalts (MI-IIIs) in the Sugaitebulake Formation; (f) Mafic sills (MI-IIIs) in the Sugaitebulake Formation; (i–j) Syenites. Sample 
locations are shown in Fig. 2. Aug-Augite; Or-Orthoclase; Pl-Plagioclase; Px-Pyroxene; Qz- Quartz. 
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on the (K2O + Na2O)/SiO2 diagram (Fig. 8). The MI-IIs and MI-IIIs also 
are enriched in LILEs, but without Nb or Ta anomalies. The distribution 
patterns of the trace elements resemble ocean island basalts (OIB) 
(Fig. 10c–f). 

The geochemical composition of five syenite samples from Sugaite-
bulake village are all silica oversaturated (61–66 wt%). They have high 
(K2O + Na2O) contents of 9.27–10.55 wt% and plot in the alkaline and 
trachyte (syenite) fields on the (K2O + Na2O)/SiO2 diagram (Fig. 8). On 
the chondrite-normalized REE diagram, the syenite samples show 
similar REE patterns with (La/Yb)N values ranging from 7 to 16 and Eu/ 
Eu* values between 0.6 and 1.0 (namely, medium to weak negative Eu 
anomalies) (Fig. 10c). The negative Eu anomalies likely reflect fractional 
crystallization of plagioclase feldspar. On the primitive mantle- 
normalized trace element diagram, the syenites show depletions in 
Nb, Ta and Ti, and absence of negative Zr and Hf anomalies (Fig. 10d), 
suggesting residual amphibole and Ti-bearing minerals in the source. 

5.3. Sr-Nd isotopic composition 

Two, 3, 1, 7, and 6 samples of rhyolite clasts, MI-Is, MI-IIs, MI-MIIs 

Fig. 7. (a, c and e) Cathodoluminescence (CL) images of representative zircon grains showing laser spots in white circle and 206Pb/238U ages in white; (b, d and f) 
Zircon LA-ICPMS U–Pb Concordia ages. 

Fig. 8. Na2O + K2O vs. SiO2 diagram (Middlemost, 1994).  
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Fig. 9. Major oxides TiO2, total Fe2O3, CaO and P2O5 vs. SiO2 diagrams. Previous Aksu data sources: granites (Wu et al., 2018), andesites (He et al., 2019a), MI-Is 
(Zhang et al., 2009a), MI-IIIs (Wang et al., 2010; Zhang et al., 2012c; Xu et al., 2013b; Lu et al., 2018). 

Fig. 10. Chondrite-normalized REE patterns (a, c and e) and primitive mantle-normalized multiple trace element diagrams (b, d and f) for samples from the Aksu 
area. Standard values of chondrite come from Sun and McDonough (1989). 
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and syenites, respectively, were analyzed for whole-rock Sr-Nd isotopes 
(Table S3). The rhyolite clasts from the Yuermeinake Formation show 
uniform Nd isotopic compositions with εNd(t) values of − 1.5 to − 1.6 and 
initial 87Sr/86Sr ratios of 0.7033–0.7087. The syenite samples display a 
large range of 87Sr/86Sr(t) values from 0.7063 to 0.7090 and near-zero 
initial εNd(t) values from − 1.8 to 0 (Fig. 11a, Table S3). The emplace-
ment ages of phase I, II and III mafic intrusions are ~760–745 Ma 
(Zhang et al., 2009a; Lu et al., 2018; Xia et al., 2019), 755 Ma (coeval 
with the age of syenite in this study), and ~520 Ma (e. g., Lu et al., 
2018), respectively. The ages (745 Ma, 755 Ma and 520 Ma) are used to 
calculate initial Sr-Nd isotopic ratios. The MI-Is contain a narrow range 
of radiogenic 87Sr/86Sr(i) from 0.7050 to 0.7074 and unradiogenic 
143Nd/144Nd with initial εNd(t) values ranging from 0.9 to 1.5 (Fig. 11a, 
Table S3). The MI-IIs sample shows a 87Sr/86Sr(i) of 0.7076 and a near- 
zero initial εNd(t) value of − 0.2 (Fig. 11a, Table S3). The MI-IIIs contain 
a large range of 87Sr/86Sr(i) values from 0.7057 to 0.7090 and initial 
εNd(t) values from − 4.4 to − 1.2 (Fig. 11a, Table S3). 

6. Discussion 

6.1. Petrogenesis 

Petrological and geochemical data indicate that the ~840 Ma rhy-
olites in the Yuermeinake Formation are sub-alkaline rocks (Fig. 8). 
They are enriched in LREEs, LILEs, and undepleted in HREE which im-
plies that pyroxene and/or amphibole were present and garnet was 
absent in the source region. The negative Nb, Ta and Ti anomalies and 
the absence of negative Zr, Hf, Sm anomalies suggest that these rocks 
underwent fractionation of amphibole and rutile/titanite but lack sig-
nificant fractionation of zircon (Fig. 10b). The rhyolites have slightly 

negative εNd(t) (t = 840 Ma) values of − 1.5 to − 1.6 and moderate initial 
87Sr/86Sr ratios (Fig. 11a, Table S3), which are consistent with deriva-
tion from lower continental crust rather than oceanic slab. 

Intergrowth contacts exist between the syenites and MI-IIs (Figs. 2, 
5a–c), suggesting that these two lithomembers formed coevally 
(754–755 Ma). The MI-Is yielded a similar crystallization age of 
~760–745 Ma (Zhang et al., 2009a; Lu et al., 2018; Xia et al., 2019) to 
the MI-IIs. In contrast, the MI-IIIs yielded a much younger crystallization 
age of ~520 Ma (Lu et al., 2018). This is consistent with the field oc-
currences presented earlier in this paper. It further corroborates our 
argument for at least three phases of mafic igneous activity in the Aksu 
region with distinct petrogenetic characteristics (Figs. 2, 3 and 4a-b). 
This conclusion is also supported by whole-rock compositions and Sr-Nd 
isotopes. In the SiO2 vs. major oxides diagrams, the MI-Is belong to 
different trends or fields from the MI-IIs and MI-IIIs (Fig. 9). Moreover, 
in both the rare earth element and trace element diagrams, MI-Is are 
distinguishable from the MI-IIs and MI-IIIs (Fig. 10c–f). The MI-Is have 
positive Eu anomaly and are depleted in Nb and Ta (Fig. 10d). Note that 
the MI-IIs and MI-IIIs belong to two different phases of mafic magmatism 
formed in different times, although they show a similar decreasing trend 
in Ti, Fe2O3, Ca and P with increasing SiO2 (Fig. 9), rare earth element 
and trace element patterns (Fig. 10c–f). 

The three phases of mafic rocks exhibit wide ranges of 87Sr/86Sr(i) 
values (between 0.7050 and 0.7074 for the MI-Is, 0.7076 for the MI-IIs, 
and 0.7057–0.7090 for the MI-IIIs). The variations in the 87Sr/86Sr(i) 
values may reflect: (1) either mantle source heterogeneities or mantle 
source mixing because the 87Sr/86Sr(i) values are not fractionated dur-
ing partial melting (e.g., Hole et al., 1995); (2) post-emplacement 
alteration or; (3) contamination by continental crust or input of a sub-
duction zone component (e.g., Wooden et al., 1993). Post-emplacement 

Fig. 11. (a) εNd(t) vs. (87Sr/86Sr)i diagram, MORB and OIB data are from Woodhead et al. (1998), Nowell et al. (1998) and Pearce et al. (1999); (b) (Th/Yb) vs. (Nb/ 
Yb) diagram (Pearce, 1983); (c) (La/Ba) vs. (La/Nb) diagram (after Saunders et al., 1992); (d) The diagram of Y/Nb vs. Zr/Nb. Previous data sources: MI-Is (Zhang 
et al., 2009a), MI-IIIs (Wang et al., 2010; Zhang et al., 2012c; Xu et al., 2013b; Lu et al., 2018). 
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alteration should contain chlorite, sericite or albite along with high LOI 
values. Based on the petrographic analysis and LOI values, the MI-Is 
samples lack post-emplacement alteration features. The MI-IIs and MI- 
IIIs have LOI values of 2.76–4.33 and 1.88–4.42, respectively. Thus, 
the post-emplacement alteration is likely the reason for various 
87Sr/86Sr(i) values of these samples (Fig. 6c–h and Table S2). 

Ratios of Nb/U, Nb/La, Th/Nb, and Th/Ta are relatively unaffected 
by partial melting or fractional crystallization and are effective dis-
criminants for crustal contamination (e.g., Shellnutt et al., 2014). MI-IIs 
have Nb/U (26.5–35.6), Nb/La (0.8–0.9), Th/Nb (0.1), and Th/Ta 
(1.5–2). MI-IIIs have Nb/U (22.3–38.6), Nb/La (0.5–0.9), Th/Nb (0.1), 
and Th/Ta (1.7–2). These ratios are different from average upper crustal 
ratios that are 8.9, 0.8, 0.4, and 4.8, respectively (Taylor and McLennan, 
1995). The MI-Is have Nb/U (10.9–12.8), Nb/La (0.2), Th/Nb (0.4–0.5), 
and Th/Ta (6.4–7.1), are comparable to the average upper crust. Hence, 
we suggest that crustal contamination affected the MI-Is magmas (e.g., 
Zhang et al., 2012d) and resulted in more radiogenic 87Sr/86Sr ratios. In 
contrast, crustal contamination is a relatively minor contributor to the 
MI-II and MI-III magmas. 

Subduction zone contaminants (oceanic crust, fluids and sediments) 
are also a potential source of Sr isotopic enrichment. The 0.9 Ga arc- 
affinity rocks in the Aksu area formed in a subduction setting (He 
et al., 2019a). The MI-Is display a negative Nb–Ta anomaly (Fig. 10d), 
which is common in subduction-contaminated magmas. However, these 
features are absent in MI-IIs and MI-IIIs (Fig. 10c, d). Modification of 
mafic magma by subduction zone enrichment would produce higher and 
more variable Ba/La (e.g., Davidson, 1987). MI-Is have high Ba/La 
values (62–65), indicating a subduction-related arc setting. Contami-
nation by continental crust or subduction zone enrichment would lead to 
a higher Th value (Pearce, 1983). On diagrams of Th/Yb versus Nb/Yb 
(Fig. 11b) and La/Ba versus La/Nb (Fig. 11c), the MI-Is fall into the 
crustal or subduction contamination setting field. Hence, it is likely that 
the MI-Is formed by crustal or subduction contamination, with magma 
source derived from the lithospheric mantle or metasomatized mantle 
wedge. Alternatively, the parental magma of MI-Is was derived from a 
subduction-related metasomatized subcontinental lithosphere mantle 
(Zhang et al., 2011, 2012d), which has more radiogenic 87Sr/86Sr ratios. 

In a comparison between εNd(t) versus 87Sr/86Sr(i), MI-IIs are close to 
the compositions of EMII, and MI-IIIs plot close to the compositions of 
OIB, EMI and EMII (Fig. 11a). Variations in these 87Sr/86Sr(i) ratios are 
likely caused by mantle source heterogeneities or mantle source mixing. 
On diagrams of Th/Yb-Nb/Yb (Fig. 11b) and La/Ba-La/Nb (Fig. 11c), 
MI-IIs and MI-IIIs plot along the trend array between OIB and MORB/E- 
MORB. Thus, the geochemical and isotopic data suggest that the 
parental magma of the MI-IIs and MI-IIIs formed initially from an 
enriched OIB asthenospheric mantle source. These magmas were locally 
modified by interactions with lithospheric mantle containing EMI/EMII- 
like geochemical characteristics. In a diagram of Y/Nb versus Zr/Nb 
(Fig. 11d, e. g., Volkert et al., 2015), the MI-IIIs follow a trend with 
increasing Zr/Nb and a higher degree of melting. The MI-Is and MI-IIs 
show non-linear trend as compared to the MI-IIIs. 

Syenite is an intermediate alkaline rock and common in rift-related 
tectonic settings (Abdalla et al., 1996). It can be generated by partial 
melting of crustal rocks (e.g., Lubala et al., 1994; Huang and Wyllie, 
1975), extensive fractional crystallization of mantle-derived basaltic 
magma (Brown and Becker, 1986; Yang et al., 2005), or mixing of 
alkaline or basic melt with silica melt (e.g., Barker et al., 1975; Shep-
pard, 1995; Zhao et al., 1995; Riishuus et al., 2005). In places, the Aksu 
syenites are associated with the MI-IIs (Figs. 2, 5a–c). The major ele-
ments of the syenites show a distinct decrease of TiO2, Fe2O3, CaO, and 
P2O5 with increasing SiO2 (Fig. 9), which is broadly consistent with 
fractional crystallization. Sr and Nd isotopes are not fractionated during 
partial melting, so variations in these ratios probably reflect mantle 
source heterogeneities or mantle source mixing (e.g., Hole et al., 1995). 
The syenites and associated MI-IIs show similar Sr and Nd isotopic 
compositions (Fig. 11a). These observations indicate that the syenite 

was sourced from the same region as the phase II mafic rocks, and they 
evolved from the same mantle-derived basaltic magma via fractional 
crystallization. 

6.2. Tectonic settings of the igneous rocks 

In a diagram of A/NK versus A/CNK (Fig. 12a), the rhyolite samples 
plot in the metaluminous and I-type granitoid series fields similar to 
those of arc-affinity rocks (e. g., Pearce et al., 1984; Maniar and Piccoli, 
1989). Trace elements serve as proxies that aid in the discrimination 
between various tectonic settings, particularly a distinction between 
non-arc and arc environments. Generally, subduction-related arc 
igneous rocks are characterized by relative depletion in Nb and Ta and 
enrichment in LREEs and Th. All the rhyolite samples in the present 
study have remarkable negative Nb–Ta anomalies, Th enrichment and 
sleep LREE and flat HREE patterns (Fig. 10a, b). They have Th/Ta ratios 
of 11.6–12.7 and plot in the active continental margin field in the Th/Ta 
vs. Yb diagram (Gorton and Schandl, 2000) (Fig. 12b). The arc-affinity 
signatures indicate the rhyolite formed in an active continental margin 
arc setting. The detrital zircon grains in the Yuermeinake Formations are 
predominantly euhedral with oscillatory zoning, implying their igneous 
origin and short-distance transportation (He et al., 2014). The U-Pb 
geochronology data of these detrital zircon grains presented a large age 
cluster peaking at ~850 Ma (He et al., 2014), comparable with the ages 
of the rhyolite clasts. Records in the immature sedimentary rocks com-
bined with the geochemical signatures of their igneous counterparts 
suggest that the ~840 Ma arc magmatism took place near the Aksu 
region. 

Previous studies of ~900 Ma andesites (He et al., 2019a) and ~850 
Ma granites (Wu et al., 2018) near Aksu exhibit metaluminous and I- 
type granitoid characteristics (Fig. 12a). Most of those samples plot in or 
near the continental margin arc setting (Fig. 12b). Our results, combined 
with previous data, suggest that Early-Middle Neoproterozoic arc- 
related magmatic rocks were formed through slab subduction in/near 
the Aksu region. 

Evidence for subduction is well-documented in the blueschist- 
bearing Aksu Group. The Aksu blueschists represent relict oceanic 
crust that subducted to mantle-lithospheric depths during the mid- 
Neoproterozoic (Yong et al., 2013; Xia et al., 2019). Combined with 
data from the 900–840 Ma intermediate-acid igneous rocks (He et al., 
2019a; this study) and the ~760–745 Ma mafic dikes (Zhang et al., 
2009a; Lu et al., 2018; Xia et al., 2019), we conclude that Aksu area was 
the locus of long-lasting subduction during the Early- to Mid/Late- 
Neoproterozoic (900 Ma to >760–745 Ma). 

The coeval MI-Is (~760–745 Ma) and MI-IIs-syenites (755 Ma) 
intruded into the Aksu Group and Qiaoenbulake Formation, respectively 
(Fig. 3). The mafic-syenitic suite is usually associated with extensional 
regimes (Abdalla et al., 1996; Mingram et al., 2000). The emplacement 
and occurrence of the Late Neoproterozoic Aksu igneous rocks (MI-Is, 
MI-IIs and syenites) support their association with an extensional con-
tinental setting. Several discrimination diagrams were employed to 
constrain the tectonic setting of these igneous samples. On diagrams of 
Nb-Zr-Y (Fig. 12c) (Meschede, 1986), the MI-Is plot in the field of 
volcanic-arc basalt, MI-IIs plot along the “within-plate” alkalic-tholeiitic 
basalt field (Fig. 12c). The syenite samples (755–754 Ma) plot in the 
field of the within-plate volcanic zone on the Th/Ta vs. Yb diagram, 
similar to the MI-IIs (Fig. 12b). Following exhumation of the blueschist- 
bearing Aksu Group, the region was transformed from an ocean- 
continent subduction regime to a continental setting during which the 
MI-Is and MI-IIs were intruded. Under such conditions, magmatic source 
of the MI-Is series was modified by subduction-related components or 
alternatively, the MI-Is rocks were derived from the subduction- 
modified metasomatized subcontinental lithosphere mantle (Zhang 
et al., 2011). In contrast, the magmatic source of the MI-IIs was unal-
tered. The mafic rocks (755 Ma) and other coeval magmatism in Tarim 
are generally thought to reflect continental extension events within the 
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Rodinia supercontinent (e. g., Chen et al., 2004; Zhang et al., 2009a, 
2009b). Although Late Neoproterozoic normal faulting has no surface 
expression in the area, seismic profiles indicate the presence of the 
normal faults in the northwestern Tarim basin. These steeply-dipping 
normal faults are overlain by Cambrian-aged sedimentary cover (He 

et al., 2019b). The basal unit at the western end of the Aksu cliff-face 
section is thicker relative to the eastern end, which also reveals that 
normal faults may have been active in the region during the late Neo-
proterozoic (Turner, 2010). 

The MI-IIIs (Wang et al., 2010; Zhang et al., 2012c; this study) in the 

Fig. 12. (a) Shand’s index of A/NK vs. A/CNK diagram (after Maniar and Piccoli, 1989); (b) Th/Ta vs. Yb discriminant diagram (Gorton and Schandl, 2000); (c) 
Diagram of Nb-Zr-Y (Meschede, 1986) for Aksu mafic intrusions. 1, within-plate alkalic basalt; 2, within-plate tholeiitic basalt; 3, volcanic-arc basalt; 4, N (normal) 
MORB; 5, P (plume) MORB. Previous data sources: MI-Is (Zhang et al., 2009a), MI-IIIs (Wang et al., 2010; Zhang et al., 2012c; Xu et al., 2013b; Lu et al., 2018), 
granite from Wu et al. (2018), and andesite from He et al. (2019a). 

Fig. 13. Proposed tectonic evolution of the Tarim Block during the Neoproterozoic. (a) Simplified Rodinia model at ca. 850 Ma with Tarim located at the periphery 
of the supercontinent (modified after Cawood et al., 2013); (b) Between 900 and 840 Ma, subduction of oceanic lithosphere occurred along the margins of 
northwestern Tarim (modified after Ge et al., 2016); (c) >760–745 Ma, oceanic crust (including the Aksu Group) subducted beneath the Tarim Block and formed 
blueschist-facies metamorphic rocks (modified after Ge et al., 2016; Lu et al., 2018); (d–e) At ca. 755 Ma, the Aksu region underwent extension as evidenced by the 
emplacements of MI-Is and MI-IIs/syenites into the Aksu Group and Qiaoenbulake Formation, respectively; (d) Modified after Zhang et al. (2013a); (e) Modified after 
Lu et al. (2018); (f–g) At ~520 Ma, the Tarim crust underwent further extension and basin development. The MI-IIIs were sourced from the upwelling asthenosphere 
and intruded into the syn-extensional basin. 
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nonmarine Sugaitebulake Formation exhibit features typical of conti-
nental rifts. It is also supported by the geochemical data. On diagrams of 
Nb-Zr-Y (Fig. 12c) (Pearce and Norry, 1979), the MI-IIIs plot in the area 
of “within-plate” alkalic-tholeiitic basalt field (Fig. 12c) similar to vol-
canic rocks associated with continental rift (e. g., Pearce and Norry, 
1979). 

6.3. Tectonic implications 

Early Neoproterozoic granitoids are extensive along the margin of 
the Tarim Craton (Xu et al., 2005, 2013a; Zhang et al., 2006, 2007, 
2009a, 2011; Lu et al., 2008; Shu et al., 2011; Long et al., 2011b; Wu 
et al., 2012, 2018; Wang et al., 2013, 2015). In the Altyn region 
(southeastern Tarim Block) (Fig. 1), the Early Neoproterozoic granitoids 
show features of active continental margin magmatic rocks (Wang et al., 
2013). In the Kuluketage region (northeastern Tarim Block) (Fig. 1), the 
Mid- to Late-Neoproterozoic high-grade facies metamorphic rocks 
indicate an advancing-type accretion processes (He et al., 2013; Ge 
et al., 2016). Tectonothermal events, combined with the Early Neo-
proterozoic magmatic rocks and blueschists in the Aksu region (Liou 
et al., 1989, 1996; Nakajima et al., 1990; Zhu et al., 2011; Yong et al., 
2013; Wu et al., 2018; He et al., 2019a; Xia et al., 2019; this study), 
suggest that the northern and southeastern parts of Tarim Block were 
active continental margins during the Early to Middle Neoproterozoic, 
which might be associated with the peripheral subduction-accretion 
process during the assembly of the Rodinia supercontinent 
(Fig. 13a–c) (e.g., Lu et al., 2018; Long et al., 2011b; Zhang et al., 2012a; 
Ge et al., 2016). 

Numerous Mid- to Late Neoproterozoic mafic dikes and rift-related 
igneous rocks are identified in the Kuluketage and Korla regions 
(northeastern Tarim Block) (e.g., Xu et al., 2005; Shu et al., 2011; Zhang 
et al., 2007, 2009b, 2012a, 2013a; Long et al., 2011a, 2012; Long et al, 
2011b), Tieklik (southwestern Tarim Block) (e.g., Wang et al., 2015), 
Aksu (northwestern Tarim Block) (Zhu et al., 2008; Zhang et al., 2009a; 
Wang et al., 2010; this paper), and drill cores in the central Tarim basin 
(e.g., Xu et al., 2013a). These rocks were regarded as by-products of 
rifting events in the Tarim Block (Zhang et al., 2012a; Xu et al., 2013a, 
2013b). Some mafic and ultramafic rocks show arc-like geochemical 
signatures (e.g., Zhang et al., 2012d), thus, a mantle plume-plate sub-
duction interaction (Zhang et al., 2012a, 2012d) or an accretionary 
orogen (Ge et al., 2014c, 2016) model were employed to explain their 
formation. 

The Early to Mid-Neoproterozoic subduction described above likely 
led to the closure of an ocean along the present-day Aksu region. From a 
geochemical perspective, we are unable to discern what blocks may 
have collided with Tarim (if any) during this interval (Fig. 13d). 
Furthermore, if evidence for this collision is available, it is buried 
beneath thick Phanerozoic cover. 

Alternatively, some argue that magmatism was related to long-lived 
subduction along the margins of Tarim (e. g., Ge et al., 2016). In this 
scenario, the Tarim block was located along the periphery of the Rodinia 
supercontinent and its margins were part of the circum-Rodinia sub-
duction zone (Fig. 13e). If this is the case, the rift-related MI-Is, MI-IIs 
and syenites might be triggered by a Neoproterozoic plume beneath 
the Rodinia supercontinent (Fig. 13e). 

Regarding the MI-IIIs, Wang et al. (2010) and Zhang et al. (2012c) 
show typical continental rifting features both in field occurrence and 
geochemistry. We argue that the MI-IIIs were sourced from the up-
welling asthenosphere and intruded into the syn-extensional basin. The 
formation of the MI-IIIs series rocks corresponds to the Late Neo-
proterozoic - Early Cambrian rifting event developed on the northern 
margin of the Tarim Block which isolated the Tarim Block from neigh-
boring crustal fragments (e.g., Turner, 2010). 

Our new data, along with previously published results, lead us to 
propose a tentative tectonic model for the Tarim Block: (1) Between 900 
and 840 Ma, subduction occurred along the margins of northwestern 

Tarim (Fig. 13b). (2) At >760–745 Ma (constrained by the ages of sy-
enites in this study, and mafic dikes in Zhang et al., 2009a, Lu et al., 
2018, Xia et al., 2019), oceanic crust (including the Aksu Group) sub-
ducted beneath the Tarim Block and formed blueschist-facies meta-
morphic rocks (Fig. 13c). (3) At 755 Ma, the Tarim Block underwent 
extension as evidenced by the emplacement of MI-Is and MI-IIs (Fig. 13d 
or e). (4) At ~520 Ma (Lu et al., 2018), the Tarim crust underwent 
further extension and basin development (Fig. 13f or g). 

7. Concluding remarks 

This study focused on the field observations, geochronology and 
geochemistry of three phases of Middle Neoproterozoic - Early Cambrian 
mafic intrusions, syenites, and rhyolite clasts in the Aksu area, north-
western Tarim Block. Geochemical and Sr-Nd isotopic data suggest that 
the ~840 Ma rhyolite clasts in the Yuermeinake Formation conglom-
erates were formed in a subduction-related arc setting. In contrast, the 
MI-Is (~760–745 Ma) and MI-IIs (755 Ma) were derived from an 
enriched lithospheric mantle, with MI-Is metasomatized by subduction- 
related components. We suggest that the transition from subduction- 
related convergence to continental rifting occurred around 760 Ma in 
the northwestern Tarim Block. The MI-IIIs magmatism (~520 Ma) rep-
resents further later extension event occurred in the Tarim Block. 
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