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CONTRASTING STYLES OF PERALUMINOUS S-TYPE AND I-TYPE
GRANITIC MAGMATISM: IDENTIFICATION AND IMPLICATIONS
FOR THE ACCRETIONARY HISTORY OF THE CHINESE
SOUTH TIANSHAN

ZAILI TAO*** JIYUAN YIN****1 WENJIAO XIAOS%%, REIMAR SELTMANNSSS,
WEN CHEN*, MIN SUN*** TAO WANG*, CHAO YUAN?,
STUART N. THOMSON*, YUELONG CHEN**, and XIAOPING XIA*

ABSTRACT.  Peraluminous granitoids have aluminum saturation indices (A/CNK)
higher than 1.0, which overlap to some extent between S- and I-type granitoids.
However, their source and petrogenesis are still disputed. For example, whole-rock
compositions alone are not always a valid way to discriminate the sources of peralu-
minous granitoids. To identify the geochemical affinities, source and petrogenesis of
the peraluminous granitoids, we present new geochemical data, in situ zircon U-Pb
ages and Hf-O isotopic data, and whole-rock Sr-Nd isotopic data for the peralumi-
nous granitoids in the South Tianshan Orogen Belt (STOB), Northwesten China.
Zircon U-Pb ages suggest that these peraluminous granitoids were emplaced in the
latest Carbonlferous (ca. 299 Ma). They contain the diagnostic mineral muscovite
and have high d*®O,, values (-8.0 %) demonstrating a close affinity with Stype
granitoids. Their low eNd(t) values (25.3 to 27.6), combined with variable zircon
eHf(t) values (20.35 to 210.18), indicate that these S-type granitoids were likely
derived from partial melting of metasedimentarY rocks. In addition, inherited zircon
cores from the S-type granitoids have variable d*®0O values (6.34-10.5 %) and zircon
eHf(t) values (24.3 to 16.3), with age populations (ca. 400 to 500 Ma) similar to
those of detrital zircons from late Carboniferous metasedimentary rocks in the
region. These data show that the S-type granitoids were dominantly derived from
late Carboniferous metasedimentary rocks rather than Precambrian crustal materials.
The studied granitoids have a transitional composition between I- and S-type gran-
itoids, which could be related to low compositional maturity of the late Carboniferous
metasedimentary source. According to the spatial and temporal distribution and petro-
genesis of the Carboniferous intrusive rocks in the STOB, we propose that a slab roll-
back model can account for the generation of late Carboniferous S-type granitoids in
the STOB.

Key words: Peraluminous granitoids, South Tianshan Orogen Belt, Metasedimentary
rocks, Slab roll-back

introduction

A separation of S-type granitoids from I-type granitoids was proposed by White
and Chappell (1977), based on studies of granitoids from the Lachlan Fold Belt
(LFB) of south-east Australia. Generally, S-type granitoids are characteristically
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strongly peraluminous (A/CNK=molar Al,03/(CaO1Na,01K,0) . 1.1) and con-
tain aluminum-rich minerals (such as garnet, cordierite and muscovite). I-type gran-
itoids are characteristically metaluminous to weakly peraluminous (A/CNK < 1.1)
and contain amphibole. S-type granitoids are generally considered to be derived from
the partial melting of metasedimentary rocks, whereas I-type granitoids are generated
by the partial melting of metaigneous rocks (Chappell and White, 1974; McCulloch
and Chappell, 1982). Consequently, when dealing with granitoid petrogenesis,
discrimination of geochemical affinities (I-type or S-type) of granitoids is of foremost
importance. In this regard, subsequent studies argued that the contrasting variation
trends in P,Os and A/CNK versus SiO, are very effective in distinguishing the two
types of granitoid in the LFB (Chappell, 1999; Stevens and others, 2007). However,
these criteria are not always valid when used to distinguish peraluminous granitoids
elsewhere in the world. For example, the peraluminous granitoids from the Cape
Granite Suite (CGS) in South Africa exhibit a negative correlation between P,O5 and
SiO, (Gao and others, 2016), similar to those of I-type granitoids, but these peralumi-
nous granitoids have been proven to be typical S-type granitoids (Stevens and others,
2007; Villaros and others, 2009). Therefore, if no characteristic minerals such as am-
phibole or cordierite/garnet are present, determining the source of peraluminous
granitoids is not straightforward.

The development of in situ microanalytical techniques for the determination of
isotopic compositions in accessory minerals has been proven to be effective for the
study of granitoid petrogenesis and continental crust evolution (Valley and others,
2005; Kemp and others, 2007). Zircon is a common and robust accessory mineral in
granitoids that preserves the isotopic composition of its parent magma at the time of
crystallization (Valley and others, 2005). Zircon Hf isotopic compositions can distin-
guish the relative contribution of juvenile crust and ancient continental crust materi-
als (Griffin and others, 2002; Kemp and others, 2007). Zircon oxygen isotopic
compositions are useful in tracing the recycling of supracrustal rocks, because oxygen
isotopes (expressed as d*20) are sensitive to involvement of a supracrustal component
that experienced either high- or low-temperature water-rock interaction (Valley and
others, 2005). Zircon O isotopic compositions can thus provide crucial clues to test
whether peraluminous granitoids were derived from metasedimentary rocks (S-type)
or metaigneous rocks (I-type).

The Central Asian Orogenic Belt (CAOB; fig. 1A), is one of the largest accretion-
ary orogens in the world (S§eng6r and others, 1993; Jahn and others, 2000; Kroner and
others, 2008), and was formed by multiple accretion and collision processes as a result
of successive closure of several ancient ocean basins (Jahn and others, 2000; Xiao and
others, 2009). The South Tianshan Orogenic Belt (STOB) occupies the southwestern
margin of the CAOB, which formed through the northward subduction of the south
Tianshan Ocean (Gao and others, 2009; Xiao and others, 2013). Previous researchers
have shown that late Carboniferous to early Permian granitoids were widespread in
the STOB (Konopelko and others, 2007; Zhu and others, 2008a; Ma and others, 2010;
Seltmann and others, 2011). These granitoids are weakly peraluminous (A/CNK<
1.1; Zhu and others, 2008a; Ma and others, 2010; Huang and others, 2012), consistent
with the geochemical features of I-type granitoids (Chappell and White, 2001). In con-
trast, they are characterized by negative eNd(t) values and high K,O/Na,O ratios
(-1) (Konopelko and others, 2007, 2009; Ma and others, 2010; Huang and others,
2012) resembling S-type granitoids (Gao and others, 2014; Zhao and others, 2015).
Thus, whether they can be ascribed as S-type or I-type is uncertain. In addition, the
late Carboniferous tectonic setting is still a matter of debate in the STOB, with com-
peting hypotheses including an intra-continental rift or mantle plume model (Zhang
and Zuo, 2013; Han and Zhao, 2018; Han and others, 2019), a post-collisional
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Fig. 1. (A) Simplified tectonic map of the CAOB (after Jahn and others, 2000), and (B) geological
map of the Tianshan Orogenic Belt (modified from Gao and others, 2011). Data sources for the ages of
granitic intrusions: (1) and (2) (Li and others, 2015); (3) (Xu and others, 2013) (4) (Dong and others,
2011) (5), (6) and (7) (Seltmann and others, 2011); (8), (9) and (10) (Konopelko and others, 2007).

environment (Gao and others, 2009; Long and others, 2011; Huang and others, 2011,
2012), or arc-related setting (Zhang and others, 2007; Xiao and others, 2013).
Therefore, to overcome this controversy requires sophisticated ways to decipher dis-
tinct features of their petrogenesis and geodynamic environment.

In this contribution, we present new whole-rock major and trace element geo-
chemistry, and Sr-Nd isotopic data, as well as zircon U-Pb, Hf-O isotopic data and zir-
con trace element compositions for the granitoids in the STOB, NW China. These
data serve to clearly identify the rock types of these granitoids and provide better con-
straints on their magmatic source and petrogenesis. These findings also have signifi-
cant implications for resolving the debate on the tectonic evolution of the STOB
during the late Carboniferous.

geological setting and sampling

The Tianshan Orogenic Belt is situated in the southern part of the CAOB (fig.
1B; Windley and others, 2007; Xiao and others, 2008, 2009; Dong and others, 2011,
Han and others, 2011). It extends west-east along the southwestern part of the CAOB
from Uzbekistan, Tajikistan, Kyrgyzstan, and Kazakhstan to northwestern China
(Sengor and others, 1993). The Chinese Tianshan Orogenic Belt is divided into two
segments; the eastern Tianshan and the western Tianshan along 88°E (Li and others,
2006; Gao and others, 2009). From north to south, the western Tianshan is tectoni-
cally subdivided into the Northern Tianshan Orogenic Belt (NTOB), Yili-Central
Tianshan Terrane (CTB) and South Tianshan Orogenic Belt (STOB) (Allen and
others, 1993; Xiao and others, 2009), separated by the Northern Tianshan suture and
Northern Tarim suture, respectively.
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The STOB can be divided into western and eastern segment. The Chinese part of
the STOB is mostly located in the eastern segment of the Talas-Fergana diagonal dex-
tral strike-slip fault (Windley and others, 2007). The formation of the STOB was
related to the northward subduction and closure of the south Tianshan Ocean and
subsequent collision of the Tarim Craton to the south and the Yili-central Tianshan
block to the north. The main body of the STOB is composed of imbricated Late
Ordovician limestones, Silurian clastic sedimentary rocks, Devonian limestones,
Carboniferous clastic rocks and volcanic interlayers (Xiao and others, 2013).
Precambrian basement rocks in the STOB have not yet been clearly recognized (Han
and others, 2016a). Moreover, subduction and/or collision related high-pressure/
low-temperature (HP/LT) metamorphic rocks, ophiolitic mélanges or slices, mafic-
ultramafic rocks, island arc assemblages and granitoids are also well preserved (Gao
and others, 2009, 2011; Dong and others, 2011; Long and others, 2011). The HP-LT
terranes are mainly composed of blueschist-, eclogite- and greenschist-facies metasedi-
mentary rocks and some mafic meta-volcanic rocks with N-MORB, E-MORB and OIB
affinities (Gao and others, 2009). Most HP-LT rocks have peak metamorphic ages
varying from 320 to 310 Ma (Su and others, 2010; Li and others, 2011). Moreover, zir-
cons from eclogites yield SHRIMP U-Pb ages of 226 to 233 Ma, which were interpreted
to represent the timing of peak metamorphic conditions (Zhang and others, 2007).
There are four ophiolite mélanges in the Chinese part of the STOB, from west to east,
the Baleigong, Heiyingshan, Kulehu, and Kumux. These ophiolitic mélange units consist
of serpentinized peridotites, diabase-gabbros, basalts, cherts, with metagreywackes and
marls (Han and others, 2011), with zircon U-Pb age of 450 to 382 Ma (Wang and others,
2007; Wang and others, 2011; Zhu and others, 2008b). Paleozoic magmatism occurred
predominantly in two periods: the late Silurian to Middle Devonian, and late
Carboniferous to early Permian (Jiang and others, 1999; Konopelko and others, 2007,
2009; Ma and others, 2010; Huang and others, 2012). The former mainly consists of gran-
odiorites, quartz monzonites and diorites (Long and others, 2011; Huang and others,
2015). The latter is predominantly composed of syenites, nepheline syenites, aegirine
syenites, two-mica peraluminous leucogranitoids and A-type rapakivi granitoids (Jiang
and others, 1999; Konopelko and others, 2007; Huang and others, 2012, 2015).

We collected 12 granitic samples including biotite granitoids and
muscovite-bearing granitoids in the Hejing region of the STOB (figs. 2 and 3). The
sampling locations are labeled in figure 2 and summarized in table 1. Muscovite-bear-
ing granitoids include two-mica monzogranite (CT1604) and tonalite (CT1605). The
two-mica monzogranites have medium-coarse grained textures, and are composed of
plagioclase (35vol.%), K-feldspar (35vol.%), quartz (25vol.%), biotite and muscovite
(5vol.%), with minor accessory minerals (apatite, and zircon) (figs. 4A and B). The
tonalites are composed of plagioclase (50-60vol.%), K-feldspar (10vol.%), quartz
(25vo0l.%), biotite and muscovite (5-10vol.%), with minor apatite, and zircon (figs. 4C
and D). Biotite granitoids include monzogranite (CT1602) and quartz monzonite
(CT1606). The monzogranites exhibit medium-grained granitic texture, and consist of
plagioclase (35vol.%), K-feldspar (35vol.%), quartz (20%) and biotite (10%). The
quartz monzonites are characterized by medium-grained textures, and mainly contain
plagioclase (45vol.%), K-feldspar (25vol.%), quartz (20vol.%) and biotite (10vol.%),
with minor apatite and zircon (figs. 4E and F).

analytical methods

U-Pb Zircon Geochronology

Zircon grains were separated using conventional standard density and magnetic
separation, followed by hand-picking. Representative grains, together with the zircon
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Fig. 2. Simplified geological map of the Hejing region in the STOB (modified after Ma and others,
2015), showing spatial and temporal distribution of the late Carboniferous-early Permian magmatic rocks
in the CTB and STOB. Age data sources: Zhu and others (2008a), Tang and others (2012), Tian and
others (2014), Ma and others (2015), Yang and others (2016), Yin and others (2015), Wang and others
(2018), Chen and others (2019), Tao and others (2019), Reziwanguli and others (2019), Huang and
others (2015, 2020).

standards, were mounted in epoxy and polished. All zircon grains were photographed
in transmitted and reflected light as well as cathodoluminescence (CL) to study their
internal structures. The LA-ICP-MS zircon U-Pb isotopic compositions for each sam-
ple were determined using an Agilent 7500a ICP-MS with an attached 193 nm excimer
ArF laser-ablation system (GeolLas Plus) at the Institute of Geology and Geophysics,
Chinese Academy of Sciences (IGG-CAS). The detailed experimental methods were
described by Xie and others (2008). Analyses were acquired at a beam diameter of 32
Im, an 8 Hz repetition rate, and an energy of 10-20 J/cm2. Every 10 unknown analy-
ses were followed by measurements of two zircon 91500, one GJ-1 and one NIST SRM
610 standards. Raw data were processed using GLITTER 4.0 program (Macquarie
University). The zircons 91500 and GJ-1 were used as an external standard and inter-
nal standard, respectively. Trace element compositions of zircon were calibrated
against NIST610 combined with internal standardization Si, and common Pb was cor-
rected according to the method proposed by Andersen (2002). Analyses of the zircon
standard GJ-1 as an unknown yielded a weighted mean “°°Pb/?3®U age of 60464 Ma
(1.2, n=9), which is in good agreement with the recommended value (Jackson and
others, 2004). Isoplot (version 4.5) was used to draw U-Pb age harmonic plots and rel-
ative probability histograms (Ludwig, 2003). The LA-ICP-MS zircon U-Pb isotopic data
are presented in table 2.

Major and Trace Elements
For geochemical analyses, after cleaning, crushing and homogenization, repre-
sentative whole-rock samples were powdered to ; 200-mesh size. Major element com-
positions were analyzed on fused glass beads using a Rigaku RIX 2000 X-ray
fluorescence spectrometer at the State Key Laboratory of Isotope Geochemistry, the
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Fig. 3. Field and hand specimen photographs of the late Carboniferous granitic rocks from the Hejing region
of the STOB.

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (GIG-CAS).
Details of procedures are described by Yuan and others (2010). Trace elements,
including REE, were determined using an ELAN DRC-e ICP-MS at the State Key
Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese
Academy of Sciences, following procedures described by Liang and others (2000).

TaBLE 1

Summary of sample localities, zircon U-Pb ages and isotopic compositions of granitoid
rocks in the South Tianshan

Sample Ages Lithology GPS (*'Sr/*Sr); eNdgy gHf}y 550
CT1602* 295.8+1.7Ma Biotite granitoids ~ 42°28'34"; 86°55'19"  0.7092 ~ 0.7142 -5.3 ~+2.0 -6.18 ~+6.48 8.87 ~ 10.45 %o
CT1604 Muscovite-bearing  42°29'19"; 86°55'15"  0.7133 ~0.7188 -5.8~-5.5

granitoids
CT1605 298.5+2.0 Ma Muscovite-bearing 42°27'58"; 85°43'30"  0.7086 ~0.7092 -7.6 ~-6.9 -10.18 ~-0.35

granitoids

CT1606 298.9+2.9 Ma Biotite granitoids ~ 42°25'18"; 86°27'32"  0.7080 ~0.7081 -54~-5.8 -8.01 ~-2.85 10.54~ 11.74 %o

* The data are from Tao and others (2019).
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Fig. 4. Representative thin section photomicrographs of the late Carboniferous granitic rocks in the
STOB. PI = plagioclase, Kf = K feldspar, Bi = biotite, Q = quartz, Mus = muscovite, Cross-polarized light.

Sr-Nd Isotope Analyses

Sr-Nd isotopic compositions were performed using a Micromass Isoprobe multi-
collector ICP-MS at the State Key Laboratory of Isotope Geochemistry, the
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (GIG-CAS). Sr
and Nd were separated using cation exchange columns, and Nd fractions were further
separated by HDEHP-coated Kef columns. Detailed analytical procedures were
described by Wei and others (2002) and Liang and others (2002). Measured 26Sr/®8sr
and **Nd/***Nd ratios were normalized to 2°Sr/®%Sr=0.1194 and **Nd/***Nd =
0.7219, respectively. External precisions during the period of measurement for Sr and
Nd isotopic compositions were 6 0.000010 (n=18), and 60.000011 (n=18), respec-
tively. The &Sr/#sr ratio for the NBS987 standard was 0.710274 6 18 (n=11, 2r) and
143Nd/**“Nd for JNdi-1 standard 0.512093 6 11 (n=11, 2r).
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Fig. 5. Concordia diagrams with representative zircon CL images for LA-ICP-MS zircon analyses of
studied late Carboniferous granitoids. (A) sample CT1605 from Muscovite-bearing granitoid, (B) sample
CT1605 from Biotite granitoid..

Zircon Lu-Hf Isotopes

Lu-Hf isotope analyses were performed using a Nu Plasma HR MC-ICP-MS (Nu
Instruments), coupled to a 193nm excimer laser ablation system (Resolution M-50,
Resonetics LLC), installed in the Institute of Geology and Geophysics, Chinese
Academy of Sciences (IGG-CAS). Lu-Hf isotopic analyses were conducted on the same
spots that were previously analyzed for U-Pb isotopes. Depending on the zircon size, a
spot size of 60 Im or 40 Im was used for analysis, with a laser repetition rate of 6 Hz.
Details on the instrumental conditions and data acquisition are given in Xie and
others (2008). The measured *°Hf/*"’Hf ratios were normalized to
91§/ ""Hf=0.7325, using an exponential correction for mass bias. During analysis,
the ®Hf/Y"Hf and "°Lu/*""Hf ratios of the standard zircon (91500) were
0.282294 6 15 (20n, n=20) and 0.00031, respectively, which is in good agreement
with the low peaks of *"®Hf/*""Hf ratios of 0.282284 6 22 measured by Griffin and
others (2006).

Zircon Oxygen Isotopes

Zircon oxygen isotope analyses was measured using the Cameca IMS-1280 HR
ion microprobe at the GIG-CAS, Beijing. The detailed experimental methods are
described by Li and others (2010a). The measured oxygen isotopic values were cor-
rected for instrumental mass fractionation (IMF) using the standard Penglai zircon
d*®0vsmow = 5.36 0.10 % (2r) and Qinghu standards 5.4 6 0.2 % (2r) Li and others
(2010b). The internal precision of a single analysis generally was better than 0.2 %
(1r standard error) for the **0/*°0 ratio, and using the standard Penglai zircon as
an external standard to correct data, is 0.50 % (2SD, n=68). Detailed analytical proce-
dures are provided by Li and others (2010a).

results

Zircon U-Pb Geochronology
The zircon U-Pb isotopic data are given in table 2. The biotite granitoids and
muscovite-bearing granitoids were selected for zircon U-Pb dating. Zircons in these
samples have crystal lengths of ;100 to 300 Im with length:width ratios from 1:1 to
3:1. A few zircon grains show clear core-rim structure in cathodoluminescence (CL)
images (fig. 6B). LA-ICP-MS in situ U-Pb dating was performed on the zircon rims and
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Fig. 6. (A) Histogram of U-Pb ages for inherited zircon cores from the late Carboniferous granitoids;
(B) Representative cathodoluminescence (CL) images of zircon from the late Carboniferous granitoids.
The data sources for rocks in the Ayilihe Formation are from Han and others, (2016a, 2016b).

cores, respectively (figs. 5 and 6). Zircons from muscovite-bearing granitoids (sample
CT1605) and biotite granitoids (sample CT1606) show well-defined oscillatory zoning
and high Th/U ratios (0.18-1.18) indicating a magmatic origin (Belousova and
others, 2002). The zircon rims from samples CT1605 and CT1606 yielded 2°°Pb/?38U
ages of 291 to 305 Ma and 286 to 312 Ma, with weighted-mean ages of 299 6 2 Ma
(1r; MSWD=0.47; fig. 5A) and "299 6 3" Ma (1r; MSWD =2.6; fig. 5B), respectively.
Furthermore, U-Pb ages for the inherited zircon cores from two granitoid samples
vary from 330 to 1490 Ma (table 2), with major clusters at 400 to 500 Ma (fig. 6A).

Major and Trace Element Geochemistry

Whole-rock major and trace element compositions are given in table 3. The mus-
covite-bearing granitoids have higher SiO, contents (70.9-74.7 wt.%) and lower TiO,
(0.16-0.30wt.%), Fe,O3 (1.04-1.84wt.%), MgO (0.33-0.66 wt.%) and CaO contents
(0.87-1.85wt.%) than those of the biotite granitoids (table 3). All samples have high
K,0O (3.50-5.17 wt.%) contents (fig. 7A), with alkali-calcic and calc-alkalic characteris-
tics (fig. 7B). On the total alkali-silica (TAS) diagram (fig. 7C), all muscovite-bearing
granitoid samples fall in the granite field, whereas the biotite granitoids plot in the
quartz monzonite and granite field. On an A/NK vs A/CNK diagram (fig. 7D; Maniar
and Piccoli, 1989), both the biotite granitoids and muscovite-bearing granitoids have
low A/CNK ratios (1.0-1.1), most of which are <1.1, indicating weakly peraluminous
compositions.

The muscovite-bearing granitoids have low REE contents, and show variable
enriched LREE patterns ((La/Yb)y = 4.81-28.8) and significant negative Eu anoma-
lies (fig. 8A; Eu/Eu* = 0.34-0.63). In contrast, the biotite granitoids have higher REE
contents, more enriched LREE patterns ((La/Yb)y = 24.5-34.0) with moderate nega-
tive Eu anomalies (fig. 8A; Eu/Eu* = 0.67-0.73). On a primitive mantle-normalized
plot (fig. 8B), all samples are enriched in large ion lithophile elements (LILE), such
as Rb, Th and K, and have depleted high field strength elements (HFSE), such as Nb,
Taand Ti.
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Fig. 7. (A) K,O vs. SiO, diagram (after Gill, 1981); (B) (Na,O1K,0-CaO) vs. SiO, (after Frost and
others, 2001); (C) Total alkalis vs. silica diagram (after Middlemost, 1994); (D) A/NK vs. A/CNK diagram
(After Maniar and Piccoli, 1989).

Whole Rock Sr-Nd Isotopic Compositions
The whole rock Sr-Nd isotopic results are presented in table 4. The biotite gran-
itoids and muscovite-bearing granitoids have a wide range of 8’Rb/®Sr ratios between
1.71 and 12.88, and high initial ’Sr/®°Sr ratios from 0.7080 to 0.7188. These rocks

Fig. 8. (A) primitive mantle-normalized REE patterns, (B) primitive mantle-normalized spidergram of
granitoids from the Hejing region in the STOB (normalization values from Sun and McDonough, 1989).
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Fig. 9. (A) Nd-Sr isotopic compositions; Date sources: early Paleozoic granitoids from the STOB are
from Kong and others (2019), the Heiyingshan S-type rhyolite data from Cheng and others (2017),
Muzhaierte S-type granitoids from Gou and others (2015), Yingmailai S-type granitoids from Ma and
others (2010). (B) eHf(t) vs. Age plot of the granitoids rocks.

have negative eNd(t) values of —5.3 to —7.6, except for sample CT1602-2, which was a
positive eNd(t) ratio of 1.2.0 (fig. 9A).

Zircon Hf-O Isotopic Compositions

The zircon Lu-Hf and O isotopic data for the studied granitoids are given in
tables 5 and 6, respectively. Zircon rims from these granitoids have variable eHf(t) val-
ues (—10.2 to —0.35) and old Hf model ages (1.34-1.96 Ga), except for one spot
(CT1602@11), which has a positive eHf(t) value of 16.48 and younger Hf model age
of 0.90 Ga. However, the inherited zircon cores have relatively variable eHf(t) values
of —4.3 to 16.3 compared to the rims (fig. 9B). The zircons rims also show coherently
high d*®0,, values of 8.9 to 11.7 % (fig. 10), with an average value of 10.36 0.3 %
(1SD). However, the inherited zircons cores have relatively lower d*®0,,, of 6.3 to
10.5 % (fig. 10).

discussion

Geochemical Affinities

The late Carboniferous granitoids from the STOB have peraluminous character-
istics, with A/CNK values of 1.0 to 1.1. However, they have been variously classified as
I-type, A-type and S-type granitoid rocks. Firstly, the late Carboniferous granitoids
have low (K,01.Na,0)/Al,03, FeO'/MgO, and Ga/Al ratios and Zr, Hf and Ga con-
tents (fig. 11A) and do not contain any alkaline mafic minerals, precluding that they
belong to A-types. Secondly, these granitoids show P,Os contents that decrease with
increasing SiO, content (fig.11B) and A/CNK values that rise slightly with increasing
SiO, (fig. 11C). These features seem to be similar to those of typical I-type granites as
defined by White and Chappell (1977) in the Lachlan Fold Belt. However, all gran-
itoids have high K,O/Na,O ratios of 0.98 to 1.53 (table 3), initial 8’Sr/®%Sr ratios of
0.7080 to 0.7188, and low eNd(t) values of —5.3 to —7.6 (fig. 9A), as well as zircon eHf
(1) values of —10.2 to —0.77 (fig. 9B). These geochemical features are consistent with
the characteristics of common S-type granitoids (Chappell and White, 1974,
McCulloch and Chappell, 1982). Therefore, the geochemical characteristics have lit-
tle capacity to identify the source nature of the studied granitoids.
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TABLE 5

Zircon Hf isotope data of granitoid rocks in the South Tianshan

Analysis spot  Age "°Yb/'"Hf SLuw/'""Hf 20 TSH/THE 20 fLwHf eHf(t) Tomi Towme
(corr) (corr) (corr) (Ma) (Ma)
Biotite granitoid (CT1602)
CT1602@1* 295.8 0.023760 0.000970 0.000102 0.282488 0.000022 -0.97 -3.74 1080 1551
CT1602@?2* 295.8 0.035599 0.001453 0.000154 0.282535 0.000025 -0.96 -2.18 1027 1452
CT1602@3* 295.8 0.031813 0.001283 0.000255 0.282479 0.000021 -0.96 -4.11 1101 1575
CT1602@4* 295.8 0.030158 0.001219 0.000477 0.282521 0.000022 -0.96 -2.61 1040 1480
CT1602@5* 691 0.031865 0.001256 0.000209 0.282535 0.000024 -0.96 6.30 1021 1221
CT1602@6* 295.8 0.038127 0.001525 0.000410 0.282522 0.000024 -0.95 -2.64 1047 1481
CT1602@7* 295.8 0.037034 0.001484 0.000267 0.282483 0.000025 -0.96 -4.01 1101 1568
CT1602@8* 295.8 0.027509 0.001115 0.000261 0.282479 0.000022 -0.97 -4.09 1096 1573
CT1602@9* 295.8 0.030870 0.001248 0.000098 0.282515 0.000021 -0.96 -2.82 1049 1493
CT1602@10* 295.8 0.035349 0.001396 0.000295 0.282545 0.000026 -0.96 -1.79 1010 1428
CT1602@11* 295.8 0.034425 0.001346 0.000149 0.282779 0.000025 -0.96 6.48 677 901
CT1602@12* 295.8 0.042437 0.001695 0.000666 0.282423 0.000030 -0.95 -6.18 1193 1705
CT1602@13* 295.8 0.039648 0.001582 0.000330 0.282561 0.000027 -0.95 -1.26 993 1394
CT1602@14* 295.8 0.041417 0.001626 0.000653 0.282513 0.000024 -0.95 -2.97 1063 1503
CT1602@15* 295.8 0.046428 0.001836 0.000220 0.282577 0.000030 -0.94 -0.77 977 1363
CT1602@16* 295.8 0.038911 0.001559 0.000110 0.282528 0.000020 -0.95 -2.45 1040 1470
Muscovite-bearing granitoid (CT1605)
CT1605@1 298.5 0.025239 0.001013 0.000288 0.282462 0.000019 -0.97 -4.61 1118 1608
CT1605@?2 298.5 0.041046 0.001626 0.000238 0.282485 0.000020 -0.95 -3.89 1102 1563
CT1605@3 298.5 0.013806 0.000533 0.000144 0.282421 0.000018 -0.98 -596 1160 1694
CT1605@4 298.5 0.015944 0.000684 0.000202 0.282404 0.000020 -0.98 -6.57 1188 1732
CT1605@5 298.5 0.035535 0.001389 0.000120 0.282494 0.000018 -0.96 -3.53 1083 1540
CT1605@6 298.5 0.027859 0.001117 0.000356 0.282375 0.000022 -0.97 -7.70 1243 1803
CT1605@7 298.5 0.018728 0.000750 0.000374 0.282514 0.000022 -0.98 -2.72 1037 1489
CT1605@8 298.5 0.029285 0.001171 0.001064 0.282305 0.000029 -0.96 -10.18 1343 1959
CT1605@9 431 0.020122 0.000915 0.000631 0.282389 0.000018 -0.97 -4.31 1216 1693
CT1605@10 298.5 0.028828 0.001131 0.000298 0.282536 0.000020 -0.97 -1.99 1016 1443
CT1605@11 298.5 0.009978 0.000323 0.000883 0.282356 0.000023 -0.99 -8.22 1244 1836
CT1605@12 420 0.055764 0.002246 0.001140 0.282438 0.000021 -0.93 -3.21 1190 1615
CT1605@13  298.5 0.050291 0.001977 0.000294 0.282399 0.000030 -0.94 -7.01 1237 1760
CT1605@14 298.5 0.023405 0.000941 0.000209 0.282463 0.000024 -0.97 -4.55 1114 1605
CT1605@15 298.5 0.013046 0.000526 0.000060 0.282453 0.000019 -0.98 -4.80 1115 1621
CT1605@16 298.5 0.013997 0.000569 0.000065 0.282397 0.000020 -0.98 -6.80 1194 1747
CT1605@17 298.5 0.030941 0.001325 0.000587 0.282584 0.000024 -0.96 -0.35 954 1339
Biotite granitoid (CT1606)
CT1606@1 302.6 0.014252 0.000584 0.000050 0.282461 0.000015 -0.98 -4.44 1105 1601
CT1606@?2 302.6 0.022755 0.000946 0.000365 0.282448 0.000024 -0.97 -5.00 1135 1636
CT1606@3 302.6 0.021400 0.000859 0.000223 0.282406 0.000025 -0.97 -6.48 1192 1729
CT1606@4 302.6 0.014570 0.000602 0.000154 0.282494 0.000017 -0.98 -3.28 1060 1527
CT1606@5 302.6 0.016447 0.000687 0.000179 0.282361 0.000022 -0.98 -8.01 1248 1826
CT1606@6 302.6 0.016543 0.000672 0.000102 0.282397 0.000036 -0.98 -6.73 1197 1745
CT1606@7 302.6 0.016546 0.000676 0.000153 0.282449 0.000017 -0.98 -491 1126 1630
CT1606@8 302.6 0.017247 0.000689 0.000082 0.282379 0.000030 -0.98 -7.40 1224 1787
CT1606@9 302.6 0.016035 0.000657 0.000287 0.282454 0.000023 -0.98 -4.71 1118 1618
CT1606@10 302.6 0.012980 0.000528 0.000091 0.282448 0.000024 -0.98 -4.89 1122 1629
CT1606@11 302.6 0.019403 0.000850 0.000056 0.282418 0.000018 -0.97 -6.03 1174 1701
CT1606@12 302.6 0.018395 0.000735 0.000345 0.282507 0.000021 -0.98 -2.85 1046 1501
CT1606@13 302.6 0.016073 0.000687 0.000077 0.282418 0.000019 -0.98 -599 1169 1699
CT1606@14 302.6 0.016454 0.000682 0.000240 0.282438 0.000023 -0.98 -5.28 1140 1654
CT1606@15 302.6 0.017159 0.000698 0.000210 0.282451 0.000017 -0.98 -4.84 1123 1626
CT1606@16 302.6 0.015312 0.000640 0.000066 0.282472 0.000017 -0.98 -4.10 1093 1579

* The data are from Tao and others (2019).



298 Z. Tao and others—Contrasting styles of peraluminous S-type and I-type granitic

TABLE 6

Zircon O isotopic compositions of granitoid rocks in the South Tianshan

Sample spot Ages (Ma)  Intensity 016 0'3/0'*Mean  §"0(%0) 2SE
Biotite granitoid (CT1602)

CT1602@]17 1249 1499160000 0.002029 7.41 0.28
CT1602@18 1490 1493858000 0.002035 10.45 0.30
CT1602@19 330 1499399000 0.002027 6.34 0.29
CT1602@?20 306 1482892000 0.002034 9.69 0.31
CT1602@21 310 1499205000 0.002035 10.39 0.17
CT1602@22 450 1491158000 0.002035 10.33 0.20
CT1602@23 298 1103074000 0.002034 9.97 0.42
CT1602@24 318 1505986000 0.002034 9.69 0.26
CT1602@25 1516307000 0.002033 9.28 0.16
CT1602@26 1517093000 0.002034 9.86 0.19
CT1602@27 346 1537826000 0.002034 9.61 0.27
CT1602@28 1532076000 0.002032 8.87 0.29
CT1602@29 1542315000 0.002035 10.32 0.29
CT1602@31 1532220000 0.002033 9.43 0.21
Biotite granitoid (CT1606)

CT1606@26 295 1222428000 0.002037 11.04 0.22
CT1606@27 293 1224085000 0.002037 10.63 0.32
CT1606@30 281 1544996000 0.002036 10.60 0.25
CT1606@31 330 1550986000 0.002036 10.54 0.23
CT1606@32 286 1560702000 0.002036 10.80 0.27
CT1606@33 288 1568424000 0.002036 10.84 0.22
CT1606@34 311 1560350000 0.002036 10.81 0.20
CT1606@35 1509094000 0.002036 10.54 0.24
CT1606@36 510 1533355000 0.002030 7.80 0.30
CT1606@37 1495308000 0.002036 10.82 0.28
CT1606@38 286 1536099000 0.002036 10.77 0.24
CT1606@39 1487026000 0.002036 10.71 0.28
CT1606@40 291 1464762000 0.002038 11.74 0.24

In contrast, O isotopic data are effective in tracing the involvement of material
that has experienced surface processes in the source (Valley, 2003; Kemp and others,
2007). The studied granitoids have higher d*®0,, values of 8.87 to 11.74 % (fig.10)
than those of typical I-type granitoids that have d‘®0O,,,, values ranging from 5 % to
8.5 % (Kemp and others, 2009; Gao and others, 2014). Such high d*80,,, values are
common in S-type granitoids elsewhere in the world, such as the Bhutan leucogranites
in the eastern Himalayan orogen (Hopkinson and others, 2017), and Neoproterozoic
S-type granitoids in the Alxa Block (Dan and others, 2014). Furthermore, the musco-
vite-bearing granitoids contain strongly peraluminous minerals such as muscovite, but
lack hornblende, which is also consistent with the mineralogical characteristics of typi-
cal S-type granitoids (Chappell and White, 2001). As a result, the studied granitoids in
the STOB are best categorized as being weakly peraluminous S-type granitoids.

Origin of Inherited Zircon Cores
Most of the studied zircon grains from late Carboniferous S-type granitoids of the
STOB contain cores that are texturally discordant to their thick rims. These inherited
zircon cores gave ages of 1490 to 330 Ma, with relatively lower O compositions
(d*®0,n= 6.34-10.5 %,; table 6) than those of zircon rims, and a distinct age peak
between 400 to 500 Ma (fig. 6A). These inherited zircons could potentially be
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Fig. 10. Plot of d*0,,, values for the late Paleozoic biotite granitoids in the STOB, the field of man-
tle-derived zircons is from Valley and others (1998).

Fig. 11. (A) (K,O1Na,0)/CaO vs. Zr1CelNb1lY discrimination diagram (Whalen and others,
1987); (B) P,Os vs. SiO, diagram, the trend of |- and S-type granitoids follows Chappell (1999); (C)
A/CNK vs. SiO,; (D) eNd(t) vs. SiO, diagram.
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Fig. 12. Harker plots of major elements and trace elements for the late Carboniferous granitoids from
the STOB.

xenocrysts assimilated from crustal country rocks during emplacement of granitic
magmas. However, field geology shows no clear evidence of crustal assimilation
because no xenoliths of the country rocks have been observed in the studied S-type
granitoids (fig. 3). Besides, whole-rock Nd isotopes show relatively limited variations
and do not change with increasing SiO, contents (fig. 11D). Therefore, the inher-
ited zircons could be inherited from crustal sources rather than assimilated from
the country rocks as xenocrysts.

The U-Pb ages of inherited zircon cores show large variations (fig. 6A). Such an
age distribution is consistent with typical S-type granitoids (Gao and others, 2016).
In addition, these rocks show high zircon d*®0 values of 8.78 to 11.7 % (fig. 10) sig-
nificantly higher than those of igneous zircons from low crustal-derived magmas
(5%-7.5%; Valley and others, 2005), suggesting these rocks were most likely
sourced from sedimentary rocks (d**© >8 %: Valley and others, 2005; Kemp and
others, 2007). Furthermore, inherited zircon derived directly from the source rocks
provides accurate detrital zircon age information (Jeon and others, 2014; Yu and
others, 2019a, 2019b). The ages of the youngest inherited zircon place an upper
limit on the depositional age of these metasedimentary source rocks. The youngest
inherited detrital zircon core age of ;330 Ma is consistent with a late Carboniferous
depositional age for these sedimentary rocks (for example, Ayilihe Formation) in
the STOB (fig. 6A; Han and others, 2016a, 2016b). Therefore, these data indicate
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Fig. 13. (A) Plot of (La/Yb)y vs. La, showing partial melting and fractionation trends; (B) Chemical
composition of late Carboniferous granitoids compared with Lachlan S-type granitoids and Himalayan leu-
cogranites. Data sources are: Lachlan S-type granitoids from White and Chappell (1988), Chappell and
White (1992); Himalayan leucogranites from Visona and Lombardo (2002), Zhang and others (2004) and
Guo and Wilson (2012).

that the studied S-type granitoids likely originated from the melting of late
Carboniferous sedimentary rocks (Han and others, 2016a, 2016b).

Source and Petrogenesis of S-Type Granitoids

Compared to typical S-type granitoids, the S-type granitoids in this study exhibit
more variable CaO/FeO" ratios (0.62-0.91), lower A/CNK values (1.0 to 1.1; table 3)
and lower P,Os5 contents (0.09 to 0.26 wt.%) (Chappell and others, 1987). In addition,
the negative correlation between whole-rock P,Os and SiO, is a feature more typical
of I-type granitoids (fig. 11B). Therefore, it is intriguing why some S-type granitoids
show geochemistry more characteristic of the transition between I- and S-type gran-
itoids and even I-type granitoids. In other studies with similar results, various models
have been proposed to explain this phenomenon such as the composition of source
rocks, partial melting conditions, restite unmixing and peritectic assemblage entrain-
ment processes, and magmatic processes (for example, magma mixing, fractional crys-
tallization and assimilation of country rocks; Kemp and others, 2007; Clemens and
Stevens, 2012; Zhao and others, 2015; Gao and others, 2014, 2016).

Firstly, the S-type granitoids in this study do not contain residual or peritectic
minerals, such as garnet or cordierite, indicating that restite unmixing and peritectic
minerals entrainment did not contribute to the chemical variations of these gran-
itoids. Secondly, contributions from mantle-derived magma are readily excluded,
because mafic microgranular enclaves and coeval mafic igneous rocks are absent in
the study region. Thirdly, there are limited variations in whole-rock eNd(t) values and
d*®0,,, values within each sample. Therefore, they cannot be derived from either
magma mixing or assimilation-fractional crystallization (AFC) processes.

Alternatively, peraluminous granitoids can be produced by the fractionation of
mafic metaluminous magma (Zen, 1986). However, this process is not applicable to
this study, as these granitoids are dominated by felsic compositions (67-75wt.%), with
a lack of mafic rocks and cumulates (fig. 1B). Additionally, many major and trace ele-
ments (for example, Al,O3, Na,O, Ba and Eu/Eu*) behave scattered or stay constant
with increasing SiO, (fig. 12), which also does not support fractional crystallization.
Instead, these rocks show a typical trend of partial melting in the (La/Yb)y versus La
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Fig. 14. (A) Alzogl(MgO 1 FeO")molar vs. CaO/(MgO 1 FeO") molar diagram; (B) K,O/Na,O
molar vs. CaO/(MgO 1 FeO") molar diagram (Altherr and others, 2000; Altherr and Siebel, 2002). Data
source for other S-type rocks are as in fig. 9.

diagram (fig. 13A), suggesting that partial melting may play an important role in the
generation of these magmas.

Previous studies have confirmed that S-type granitoids are commonly produced
by partial melting of metasedimentary rocks (Chappell and White, 1974), but some
researchers (for example, Zhu and others, 2009) suggest that a few S-type granitoids
contain mantle-derived materials and/or an intracrustal component ( EPpleby and
others, 2010). The S-type granitoids in this study have obviously higher d**0,,, values
(- 8 %), than those of mantle-derived materials (d*®0,, = 5.3 6 0.3 %, Valley, 2003),
suggesting that they were most likely generated by the partial melting of metasedi-
mentary rocks. As argued above, the studied S-type granitoids likely originated from
the partial melting of late Carboniferous sedimentary rocks such as the Ayilihe
Formation. Although melt temperatures may affect the chemical variations of the S-
type granitoids (Watson and Harrison, 1983), the granitoids display limited variations
in whole-rock geochemical compositions (figs. 7 and 8; table 3). This means that the
melting temperature did not play an important role in controlling the geochemical
compositions of the S-type granitoids. Therefore, their geochemical and isotopic char-
acteristics were primarily inherited from their sources. These granitoids show negative
eNd(t) values of (—7.6 to —5.3) with old Nd model ages (1.29 to 1.68 Ga) and nega-
tive zircon eHf(t) values of (—10.2 to —0.35) with old Hf model ages (1.34 to 1.96
Ga), similar to those of metasedimentary rocks from Mesoproterozoic and upper
Paleoproterozoic crustal materials. But the inherited zircons give younger source ages
(330 to 1490 Ma), comparable with those of the detrital zircons from the sandstones
of the late Carboniferous Ayilihe Formation (Li and others, 2014; Han and others,
2016a, 2016b). In addition, the zircon Lu-Hf isotopic analyses for the early Paleozoic
inherited zircon cores yield two-stage Hf model ages of 1.22 to 1.69 Ga (fig. 9B; table
5), also similar to those of detrital zircons from late Carboniferous metasedimentary
rocks (Han and others, 2016a), favoring these rocks as the main source rather than
Mesoproterozoic and upper Paleoproterozoic crustal materials. Furthermore, previ-
ous studies have also found abundant Carboniferous inherited zircon grains in the
late Carboniferous S-type granitoids of the STOB (Cheng and others, 2017), consist-
ent with this study.

Petrologically, the source sandstones of the late Carboniferous Ayilihe Formation
are characterized by relatively low textural and compositional maturity, with high
lithic fragments (25.1%) and feldspar (7.52%; Li and others, 2014). Therefore, the
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Fig. 15. Histogram of zircon U-Pb ages for granitoids of the STOB. Modified after Tao and others
(2019).

studied S-type granitoids were derived from partial melting of the low compositional
maturity metasedimentary rocks (plagioclase-rich, clay-poor source). They have chem-
ical compositions similar to those of Lachlan S-type granitoids (fig. 13B; White and
Chappell, 1988; Chappell and White, 1992), but different from those of Himalayan
leucogranites which were dominantly produced by partial melting of pelitic rocks (fig.
13B; Visona and Lombardo, 2002; Zhang and others, 2004; Guo and Wilson, 2012).
More recently, Gao and others (2014) concluded that the Luxi biotite granitoids with
low A/CNK values (1.05 to 1.14, mostly<1.1) belong to S-type granitoids, and were
generated by partial melting of a relatively mafic metasedimentary rock, which was
likely Al-poor but Ca-rich. Similarly, the S-type granitoids in this study are also weakly
peraluminous, implying generation from low compositional maturity metasedimen-
tary source (for example, metagraywackes; fig. 14A and B). It is well established that
low compositional maturity metasedimentary rocks are enriched in feldspar and
depleted in clay, and thus have a high content of Ca and Na, but low content of Al
(Sylvester, 1998). Therefore, we emphasize that the high silica and weakly peralumi-
nous features are largely controlled by source compositions, such as a low composi-
tional maturity metasedimentary source. This mechanism also explains why the
studied S-type granitoids not only show high d*?O_,, values but also have other geo-
chemical transitional features between I- and S-types granitoids.

In summary, we propose that the late Carboniferous low compositional maturity
metasedimentary rocks were buried, heated and partially melted to produce the S-
type granitoids. Therefore, it is inappropriate to categorize these granitoids using the
A/CNK values and the variation trends in whole-rock P,Os and A/CNK versus SiO,.
In contrast, zircon O isotopic compositions are useful in tracing the recycling of meta-
sedimentary rocks (Kemp and others, 2007; Gao and others, 2016). As a result, the S-
type granitoids do not necessarily show elevated A/CNK (. 1.1) values, but have high
d*®0g,,, values.

Tectonic Implications
Late Carboniferous granitoids are widespread in the STOB, but it remains
unclear whether these granitoids were formed in an arc-related setting (Zhang and
others, 2007; Xiao and others, 2008, 2013) or in a post-collisional setting (Gao and
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Fig. 16. Schematic cartoons illustrate the late Carboniferous to early Permian tectonic and magmatic
evolution of the South Tianshan Ocean. Modified after Xiao and others (2013).

others, 2009; Han and others, 2011; Long and others, 2011). A mantle plume model
has also been proposed to explain the genesis of the late Carboniferous magmatism
in the STOB (Zhang and Zuo, 2013; Han and Zhao, 2018; Han and others, 2019).
With regard to the plume model, studies of the plume-related Tarim large igneous
province have revealed two magmatic pulses at 291 6 4 and 272 6 2 Ma, respectively
(Tian and others, 2010). These magmatic rocks are mainly composed of A; or A, type
granites. High temperature is one of the most remarkable features in these mantle
plume-related granites (Zhang and others, 2008). However, the studied S-type gran-
itoids of the STOB possess zircon saturation temperatures (Tzr =743 to 814 °C) signifi-
cantly lower than that of the granitoids related to the Emeishan plume (Tzr=934 to
1053 °C; Xu and Zhong, 2001). More importantly, the formation ages (ca. 299 Ma) of
the STOB S-type granitoids are obviously earlier than that of the Tarim mantle plume,
and thus do not support the plume model.

A post-collision setting for the late Carboniferous magmatic rocks in the STOB is
also not supported. These rocks are mainly composed of calc-alkaline and intermedi-
ate-felsic rocks with minor amounts of mafic rocks (Jiang and others, 1999; Zhu and
others, 2008a; Huang and others, 2012, 2015) and show enrichment in LILEs and
depletion in HFSEs, more akin to typical island arc-type magmas. Meanwhile, the late
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Carboniferous magmatic rocks in the western Tianshan show typical island arc geo-
chemical characteristics, such as the Tekes gabbros (306 Ma; Zhu and others, 2011
and Qunjisayi rhyolites (306 Ma, Li and others, 2015). Other geological evidence also
rules out a post-collision extensional setting including: (1) the eclogites in the Atbashi
complex were formed at 224 to 217 Ma as recognized by Sang and others (2017), indi-
cating that the South Tianshan ocean did not close until the Early Triassic; (2) late
Permian turbidites are unconformably overlain by the Middle to Upper Triassic red-
beds (Xiao and others, 2008), suggesting that final tectonic accretion took place
between the latest Permian and the Triassic; (3) an early Permian (280 6 8 Ma) low-
pressure, high-temperature metamorphic belt in Muzhaerte region of the STOB
found by Gou and Zhang (2009), further indicative of a subduction zone. Therefore,
combined with this study and previously published literature, the Tarim block did not
collide with the Yili-Central Tianshan until the Permian.

Previous studies have shown that the Carboniferous magmatism in the STOB was
mainly related to the northward subduction of the south Tianshan Ocean.
Furthermore, the STOB has a Late Devonian to late Carboniferous (380-310 Ma)
magmatic gap (figs. 15 and 16A). This magmatic quiescence period can be attributed
to the flat-subduction of the south Tianshan oceanic slab (figs. 15 and 16A). Similar
magmatic lulls also occurred in the Andes in response to flat slab subduction
(Gutscher, 2002). Subsequently, the formation of a series of special rock associations
(for example, bimodal volcanic rocks, A,-type granitoids and granitic dikes) shows a
late Carboniferous to Early Permian (310-285 Ma) magmatic “flare-up” in the CTS
and STOB (fig. 15; Jiang and others, 2005; Long and others, 2008; Huang and others,
2012, 2013; Tang and others, 2014; Ma and others, 2015; Cheng and others, 2017;
Tao and others, 2019). These characteristic rocks can serve as a powerful magmatic
marker of a high temperature with extensional subduction setting. Furthermore, the
temporal and spatial distributions of the magmatism suggest a southeastward migra-
tion as shown in figure 2. Therefore, we propose that the magmatism of this period is
related to the slab roll-back of the south Tianshan ocean at this time (fig. 16B). In this
slab roll-back model, asthenospheric mantle upwelling would have provided the heat
source to cause the partial melting of lower crust and generated extensive magmatism
and/or HT-LP metamorphism (Gutscher and others, 2000; Cawood and others, 2011;
Tang and others, 2014; Yin and others, 2017).

Although sedimentary rocks may melt during steady state subduction (Guo and
others, 2014), the complex succession of flat-slab subduction and subsequent slab
roll-back may promote the recycling of sedimentary rocks (Hao and others, 2016). In
this flat-slab subduction setting, large amounts of accretionary complex sediments
could be easily subducted into the mantle by tectonic erosion, such as observed in the
Andes-type subduction zone (von Huene and Scholl, 1991; Chapman and others,
2013). During flat-slab subduction, the cold wedge and lack of corner flow would have
inhibited the melting of subduction sedimentary rocks (fig. 16A). Then, as the sub-
duction angle increased, the asthenospheric mantle upwelling would drastically
change the thermal state of the wedge and result in the partial melting of subducting
sedimentary rocks to form the S-type granitoids in the STOB (fig. 16B). An analogous
geodynamic process has been proposed in the circum-Pacific orogens (Collins and
Richards, 2008) and western Kunlun, Northwest Tibet (Yin and others, 2020).

conclusions

1. The S-type granitoids in the STOB were emplaced in the late Carboniferous
(ca. 299 Ma).
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2. The S-type granitoids contain muscovite and have high d*20,,, values indicat-
ing that they were derived from a metasedimentary rock source. However, the
studied S-type granitoids show low A/CNK ratios (<1.1), and their P,Os con-
tents decrease with increasing SiO, contents, more typical of I-type granitoids.
Therefore, using variation trends in P,Os and A/CNK versus SiO, does not
always provide a valid means to discriminate between I-type or S-type affinity of
peraluminous granitoids.

3. Inherited zircon core ages and «Hf(t) values of the S-type granitoids are similar
to those of the late Carboniferous metasedimentary rocks, but different from
those of the Precambrian basement rocks, which further suggest that the S-type
granitoids were derived from reworking of the late Carboniferous metasedi-
mentary rocks in the STOB.

4. We propose that the late Carboniferous magmatism in the STOB was triggered
by asthenospheric upwelling as a result of the slab rollback of the subducted
south Tianshan ocean.
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