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ABSTRACT

Oceanic arc subduction systems are the 
loci of substantial recycling of oceanic crust 
and production of juvenile arc crust that 
differentiates to more evolved felsic crust. 
Inevitably, some juvenile sediments are 
subducted with the oceanic crust. However, 
distinguishing the incorporation of juve-
nile sediments in oceanic arcs is not always 
straightforward, because they may not mea-
surably shift many geochemical signatures, 
such as Sr and Nd isotopes, of oceanic arcs. 
Nevertheless, combined zircon U-Pb, Hf, and 
O isotope data can provide a powerful tool 
to decipher sedimentary flux into oceanic arc 
magmas, and here we report a case study for 
the late Paleozoic A-type granites from the 
West Junggar oceanic arc in the southern 
Central Asian Orogenic Belt. These plutons 
contain hastingsite and iron biotite diagnos-
tic minerals and have high alkali, FeOT/MgO, 
Zr, and Ga/Al, but possess low CaO contents, 
and strongly negative Eu, Sr, and Ba anoma-
lies, demonstrating their close affinity with 
A-type granites. Zircon U-Pb analyses indi-
cate that these A-type granites emplaced in 
the Late Carboniferous to Early Permian 
(ca. 307–298 Ma). Their high zircon εHf(t) 
values (+12.4 to +15.5), suggest that the mag-

mas were derived from a mantle or juvenile 
crustal source. However, their δ18Ozrn (+7.2‰ 
to +11.9‰) values are significantly higher 
than that of the mantle, and modeling using 
Hf-O isotope and rare earth element data in-
dicate the assimilation of sedimentary mate-
rials at a proportion of ∼50%. Our data sug-
gest that juvenile sediments (e.g., greywacke) 
played an important role in the formation of 
the studied A-type granites. The re-melting 
of sedimentary material induced by the late 
Carboniferous ridge subduction can pro-
mote the transition from an intra-oceanic arc 
to continental crust. Our results show that 
the subduction and re-melting of juvenile 
sediments in oceanic arc systems could be an 
important mechanism for the maturation of 
oceanic arc crust.

INTRODUCTION

A-type granites were originally defined as be-
ing alkaline, anhydrous, and have an anorogenic 
affinity (Loiselle and Wones, 1979). They are 
chemically characterized by high total-alkali, 
Zr, and Ga contents; and have low CaO, Ba, Eu, 
and Sr contents; and high FeOT/MgO and Ga/Al 
values (Whalen et al., 1987). A-type granites are 
considered to crystallize from relatively high-
temperature magmas and occur in both continen-
tal and oceanic crust. There have been debates 
over the genesis of A-type granites for a long 
time. Different mechanisms have been proposed 

to explain the origin of A-type magmas (e.g., 
melting of an underplated lower crust or recy-
cled oceanic crust or granulitic metasedimentary 
rocks, fractionation from mantle-derived basaltic 
magmas, or mixing of crust- and mantle-derived 
magma) (Eby, 1992; Collins et al., 1982; Wha-
len et al., 1987; Frost et al., 2002; Bonin, 2007; 
Huang et al., 2011; Yang et al., 2017). However, 
within oceanic arc systems, all components in-
cluding sediments, mafic lower crust, oceanic 
crust, and mantle-derived basaltic magma have 
similar radiogenic isotopic signatures (Binde-
man et al., 2005; Tatsumi et al., 2008). Large 
volumes of juvenile crust are created and recy-
cled through subduction processes culminating 
in the formation of felsic magma (i.e., A-type 
granite) (e.g., Tatsumi et al., 2008; Tani et al., 
2011; Tang et al., 2019). In oceanic arc systems, 
studies using the conventional radiogenic isoto-
pic methods are unable to distinguish the granitic 
melts from juvenile sediment, recycled oceanic 
crust, or mafic lower crust (Lackey et al., 2005; 
Jeon et al., 2012).

Zircon is a common and highly refractory 
accessory mineral in felsic lithologies and pre-
serves the isotopic compositions of its parent 
magmas at the time of crystallization (Valley 
et al., 1994; Bindeman, 2008). Zircon Hf isoto-
pic compositions can distinguish magma sources 
made of juvenile crust versus old crustal mate-
rials (Kemp et al., 2006; Dhuime et al., 2011), 
but cannot discern surficial processes that the 
source may have previously suffered, as the Hf †yinjiyuan1983@163.com.
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isotopic system is not easily modified by hydro-
thermal alteration or weathering (Griffin et al., 
2000; Harrison et al., 2005). In contrast, oxygen 
isotopic data are useful in tracing the recycling 
of supracrustal rocks, because oxygen isotopes 
(expressed as δ18O) are fractionated by low-
temperature processes (Lackey et  al., 2005), 
and thus the weathering and erosion of juvenile 
mantle-derived rocks can significantly alter their 
δ18O values, while their Sr-Nd-Hf isotopic com-
positions are essentially unchanged (McCulloch 
et al., 1980).

In this contribution, we report combined in 
situ isotopic analyses on zircon (O, U-Pb, Hf 
isotopes) from the late Paleozoic A-type gran-
ites in the West Junggar oceanic arc, southern 
Central Asian Orogenic Belt (CAOB). The re-
sults provide critical information regarding the 
magma genesis that cannot be revealed by Hf or 
O isotopes alone. These A-type granites provide 
a unique opportunity for detecting the role of 
recycled juvenile sediments in the formation of 
A-type granites and constraining the mechanism 
of crustal maturation in the oceanic arc system.

GEOLOGICAL SETTING AND 
SAMPLING

The CAOB is the largest accretionary oro-
genic belt on earth. Voluminous granites and 
volcanic rocks in the CAOB are characterized 
by positive εNd(t) and εHf(t) values (Jahn et al., 
2000; Tang et al., 2012), and represents a site 
of major crustal growth in the Phanerozoic 
(Fig. 1A; Jahn et al., 2000; Xiao et al., 2008; Han 
et al., 2015; Han and Zhao, 2018). As an impor-
tant component of the CAOB, the West Junggar 
oceanic arc is highlighted by great exposures of 
Paleozoic ophiolitic mélanges and subduction-
related arc magmatic rocks. No metamorphic 
basement has been identified (Xiao et al., 2008), 
and the dominant Carboniferous volcanic strata 
are composed of basalts, andesitic basalts, and 
andesites (Geng et al., 2011). The volcanic rocks 
display consistently depleted whole-rock Sr-Nd 
isotopic compositions (i.e., εNd(t) = +4.2 to +7.7) 
(Geng et al., 2011). The volcanogenic sediments 
also show depleted zircon Hf isotopic composi-
tions (i.e., εHf(t) = +6 to +15.7) (Choulet et al., 
2012). The detrital zircon U-Pb geochronology 
ages from late Paleozoic sedimentary rocks in 
the West Junggar suggest that volcanogenic sedi-
ments were deposited in the Early to Late Car-
boniferous at 356–304 Ma (Choulet et al., 2012; 
Liu et al., 2017). Abundant Late Carboniferous 
to Early Permian granitic plutons intruded De-
vonian–Carboniferous strata (Geng et al., 2009; 
Tang et al., 2012), which were in turn intruded 
by mafic to intermediate dikes (Fig.  1B, Yin 
et al., 2010, 2013). Previous geochemical and 

 Sr-Nd-Hf  isotopic studies have demonstrated 
that the Late Carboniferous to Early Permian 
granites were mantle-derived (Han et al., 1997; 
Geng et al., 2009; Tang et al., 2012). However, 
it is unclear whether the sources of these mag-
mas are made of juvenile supracrustal materials, 
juvenile ocean crust, or mantle-derived basaltic 
magma. Also, it is widely accepted that these 
granites reflect crustal growth, but the geody-
namic setting of the granite formation and the 
associated modes for crustal growth are the 
subjects of an ongoing debate. One view sug-
gested that Late Carboniferous to Early Permian 
granites were generated in a post-collisional set-
ting (Han et al., 1997; Chen and Arakawa, 2005; 
Chen et al., 2010). More recent views have also 
proposed important contribution from late Pa-
leozoic ridge subduction in the region (Geng 
et al., 2009; Tang et al., 2010, 2012; Yin et al., 
2010, 2013, 2015).

Samples from six representative granitic 
batholiths (i.e., Wuerkashier, Northern Kera-
may, Tiechanggou, Miaoergou, Hatu, and Ake-
basitao), located in the southern West Junggar, 
and were collected for geochemical and isotopic 
investigation in this study (Fig. 1B). Represen-
tative photographs of field outcrops and hand 
specimens are shown in Figure 2. They intruded 
the Middle Devonian to Lower Carboniferous 
strata. These granites are massive and medium- 
to coarse-grained. They show pink or light-yel-
low color at outcrops. The northern Keramay 
granite sample (18NKM01) has the mineral as-
semblages of perthite (55–60 vol%), albite (∼15 
vol%), quartz (∼25 vol%), biotite (∼3–5 vol%), 
hastingsite (∼1 vol%) and the accessory min-
erals of magnetite, apatite, zircon, titanite, and 
orthite (Fig. 3A). The granite sample (WJ1144) 
was collected from the Miaoergou batholith, 
composed of orthoclase (∼70 vol%), albite 
(∼3–5 vol%), quartz (20–25 vol%), hastingsite 
(3–5 vol%), biotite (1–3 vol%), and minor ac-
cessory minerals (e.g., magnetite, apatite, zir-
con, titanite, and orthite; Fig. 3B). The granite 
sample (WJ1117) was collected from the south-
ern slope of the Wuerkashier Mountains, con-
sisting of perthite and orthoclase (65–70 vol%), 
albite (∼5 vol%), quartz (20–25 vol%), hasting-
site (3–5 vol%), biotite (1–2 vol%), and minor 
accessory minerals (e.g., magnetite, apatite, zir-
con, titanite, and orthite; Fig. 3C). Tiechanggou 
granite sample (18TCG01) consists of perthite 
(∼55 vol%), albite (∼15 vol%), quartz (25–30 
vol%), hastingsite (∼1 vol%), and biotite (3–5 
vol%) (Fig.  3D) with accessory minerals of 
magnetite, apatite, zircon, titanite, and allanite. 
The granite sample (18Hatu) was collected from 
the Hatu pluton, composed of perthite (50–55 
vol%), albite (∼15 vol%), quartz (25–30 vol%), 
hastingsite (2–3 vol%), biotite (3–5 vol%), and 

minor accessory minerals (e.g., magnetite, apa-
tite, zircon,  titanite, and orthite; Fig. 3E). The 
granite sample (18AK01) was collected from 
the Akebasitao pluton. They consist of perthite 
(∼55 vol%), albite (∼15 vol%), quartz (∼25 
vol%), hastingsite (3–5 vol%), biotite (1–3 
vol. vol%), and minor accessory minerals (e.g., 
magnetite, apatite, zircon, titanite, and orthite; 
Fig. 3F). Dark-colored enclaves are observed in 
the above granite samples, ranging from a few 
centimeters to tens of centimeters and showing 
sharp contacts with the host granites (Fig. 2F). 
The sampling locations are shown in Figure 1B 
and the GPS coordinates, ages, and isotopic 
compositions of all samples are summarized in 
Table S11.

ANALYTICAL METHODS

LA-ICP-MS Zircon U-Pb Dating

The U-Pb isotopic compositions of zircon 
grains for samples 18AK01, 18HATU, and 
18NKM01 were analyzed on a Nu Instruments 
multicollector–inductively coupled plasma–
mass spectrometer (LA-ICP-MS), attached to 
a Resonetics RESOlution M-50-HR Excimer 
Laser Ablation System in the Department of 
Earth Sciences, University of Hong Kong. Most 
analyses were carried out with a beam diameter 
of 30 μm, at a 6 Hz repetition rate. This gave a 
238U signal of 3 × 104 to 200 × 104 counts per sec-
ond, depending on U contents. Typical ablation 
time was 30–60 s, resulting in pits 20 to 40 μm 
deep. Before measurement, samples were ablat-
ed for 10 s to eliminate potential contamination 
on sample surfaces. Also, 202Hg was monitored 
to control the isobaric interference of 204Hg on 
204Pb. Data acquisition started with a 15 s mea-
surement of a gas blank during the laser warm-
up time. The 204Pb signal was so small that the 
common lead correction is therefore regarded as 
unnecessary (Xia et al., 2004). The standard zir-
con 91500 was used to evaluate the magnitude 
of mass bias and inter-elemental fractionation. 
The 91500 standard zircon was used as primary 

1Supplemental Material. Table S1: Summary 
of zircon Lu-Hf-O isotope data from the late 
Carboniferous to early Permian granitoids in the 
West Junggar oceanic arc (NW China); Table S2: 
LA-ICP-MS U-Pb isotopic analysis for zircon grains 
from the granitic batholiths in the West Junggar 
oceanic arc (NW China); Table S3: Major and trace 
element compositions of the granitic batholiths in the 
West Junggar oceanic arc (NW China); and Table S4: 
Lu-Hf-O isotopic compositions of zircon grains from 
the granitic batholiths in the West Junggar oceanic 
arc (NW China). Please visit https://doi.org/10.1130/
GSAB.S.13244348 to access the supplemental 
material, and contact editing@geosociety.org with 
any questions.
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reference material for all U-Pb age determina-
tions, while zircon Plešovice was used as an un-
known sample. During the analyses in this study, 
20 measurements on Plešovice zircon yielded 
a weighted 206Pb/238U age of 337.2 ± 6.1 Ma, 
which is in good agreement with the recom-
mended U-Pb age (337 Ma) (Sláma et al., 2008). 
The instrumental settings and detailed analyti-
cal procedures are described in Xia et al. (2004). 
The U-Pb ages were calculated using the U de-
cay constants of 238U = 1.55125 × 10−10 year–1, 
235U = 9.8454 × 10−10 year–1, and the Isoplot 3 
software (Ludwig, 2003). Individual analyses 
are presented with 1σ errors, and uncertain-
ties in pooled age results are quoted at the 95% 
confidence level (2σ). 206Pb/238U ages are ad-
opted in this study because the relatively small 

amount of 207Pb accumulated in “young” zircons 
(<1000 Ma) does not permit precise 207Pb/206Pb 
determination (Black et al., 2003).

Zircon U-Pb isotopic analysis for samples 
WJ1144, WJ1117, and 18TCG01 were con-
ducted at Nanjing FocuMS Technology Co. Ltd. 
Australian Scientific Instruments RESOlution 
LR S-155 laser-ablation system and Agilent 
Technologies 7700× quadrupole ICP-MS were 
combined for the experiments. The 193 nm 
ArF excimer laser, homogenized by a set of 
beam delivery systems, was focused on the zir-
con surface with a fluence of 5.0 J/cm2. Each 
acquisition incorporated 20 s background (gas 
blank), followed by a spot diameter of 33 μm 
at 8 Hz repetition rate for 40 s (equating to 
320 pulses). Helium was applied as the carrier 

gas to efficiently transport aerosol out of the 
ablation cell and was mixed with argon via T-
connector before entering the ICP torch. Dwell 
times were set to 20 ms for 207Pb, 15 ms for 
206Pb and 208Pb, and 10 ms for 232Th and 238U. 
Ablation occurred in intervals of eight sample 
zircons, directly preceded and followed by two 
zircon 91500 as external standards and one zir-
con GJ-1 as quality control. During the analyses 
in this study, 10 measurements on zircon GJ-1 
yielded a weighted 206Pb/238U age of 603 ± 4 Ma 
(1σ), which is in good agreement with the rec-
ommended U-Pb age (599.8 ± 4.5 Ma, Jackson 
et al., 2004). ICPMSDataCal software 8.0 (Liu 
et al., 2010) was used to select off-line raw data, 
integrate background and analytical signals, 
time-drift correct, and quantitatively calibrate 

A
B

Figure 1. (A) Simplified tectonic divisions of the Central Asian Orogenic Belt (CAOB) (after Jahn et al., 2000). (B) Geological map of the west-
ern Junggar region, NW China (modified after Yin et al., 2013, 2017). TC—Tarim Craton; NCC—North China Craton; Mts—Mountains.
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Figure 2. Field photos of rocks from the representative granitic batholiths in West Junggar, NW China. (A, E) Outcrop and hand specimen 
of Akebasitao alkaline granite; (B) Outcrop of the northern Keramay alkaline granite; (C) Outcrop of Hatu alkaline granite; (D) Hand 
specimen of Wuerkashier alkaline granite; (F) Dark colored enclave in the northern Keramay alkaline granite.
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Figure 3. Microscopic photos of rocks from the granitic batholiths in the West Junggar, NW China. Mag—Magnetite; HS—Hastingsite; 
Zrn—Zircon; Ab—Albite; Or—Orthoclase; Pth—Perthite; Tnt—Titanite; Bi—Biotite; and Q—Quartz.
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U-Pb isotopes. Common lead correction was 
conducted following the method of Andersen 
(2002). Concordia diagram plotting, probability 
density plotting, and weighted average age cal-
culation were accomplished using Isoplot 3.27 
(Ludwig, 2003).

LA-MC-ICP-MS Zircon Lu-Hf Isotope 
Analysis

Zircon Lu-Hf isotopic ratio analyses were 
conducted following U-Pb analyses on the rela-
tively big zircon grains with concordant U-Pb 
ages for placing two laser ablation pits. Lu-Hf 
analysis spots were undertaken on the same cath-
odoluminescence (CL) domain and as closely as 
possible to the U-Pb analysis spots. Australian 
Scientific Instruments RESOlution LR S-155 
laser-ablation system and Nu Plasma II MC-
ICP-MS were combined for the experiments at 
Nanjing FocuMS Co. Ltd. Ablation protocol em-
ployed 20 s background (gas blank) and a spot 
diameter of 50 μm at 8 Hz repetition rate for 40 
s (equating to 320 pulses). Zircon GJ-1 was used 
as the reference standard and gave a weighted av-
erage 176Hf/177Hf ratio of 0.282008 ± 0.000004 
(2σ, n = 35), indistinguishable from the ratio of 
0.282000 ± 0.000005 (2σ) by solution analysis 
method (Morel et al., 2008). εHf values were 
calculated based on the present-day chondritic 
176Hf/177Hf ratio of 0.282772 and 176Lu/177Hf ra-
tio of 0.0332 (Blichert-Toft and Albarede, 1997).

SIMS Zircon O Isotope Analysis

Zircon oxygen isotopes were measured using 
the Cameca IMS-1280 HR secondary ion mass 
spectrometer (SIMS) at State Key Laboratory 
of Isotope Geochemistry, Guangzhou Institute 
of Geochemistry, Chinese Academy of Sci-
ences, Guangzhou, China. The detailed analyti-
cal procedures were similar to those described 
by Yang et al. (2018). The 133Cs+ primary ion 
beam with an intensity of ∼2 nA was acceler-
ated at 10 kV and focused to an area of 10 μm 
on the sample surface and the size of analytical 
spots is ∼20 μm in diameter (10 μm beam diam-
eter +10 μm raster). Oxygen isotopes were mea-
sured in multicollector mode using two off-axis 
Faraday cups. Total analytical time per spot was 
∼3.5 min, including 30 s of pre-sputtering, 120 s 
of automatic tuning of the secondary beam, and 
64 s of analysis. The measured oxygen isotopic 
data were corrected for instrumental mass frac-
tionation using the Penglai zircon standard (δ18O 
Vienna standard mean ocean water = 5.3‰; Li 
et  al., 2010b), which was analyzed once ev-
ery four unknowns, using the sample-standard 
bracketing method. The internal precision of a 
single analysis generally was better than 0.1‰ 

(1σ) for the 18O/16O ratio. As discussed by Kita 
et al. (2009), internal precision for a single spot 
(commonly <0.1‰, 1σ) is not a good index of 
analytical quality for stable isotope ratios mea-
sured by SIMS. Therefore, the external preci-
sion, measured by the spot-to-spot reproducibil-
ity of repeated analyses of the Penglai standard, 
0.35‰ (2 standard deviations (SD), n = 30) is 
adopted for data evaluation. Thirty measure-
ments of the Qinghu zircon standard during the 
course of this study yielded a weighted mean 
of δ18O = 5.45 ± 0.11‰ (2SD), which is con-
sistent within errors with the reported value of 
5.4 ± 0.2‰ (Li et al., 2013).

Whole-Rock Geochemistry Analysis

Bulk-rock major elements were measured by 
X-ray fluorescence spectrometry (XRF), and 
trace elements were measured by inductively 
coupled plasma–mass spectrometry (ICP-MS) 
and inductively coupled plasma–atomic emis-
sion spectrometry (ICP-AES) at the ALS Che-
mex Co., Ltd., Guangzhou. Samples were fused 
with lithium metaborate-lithium tetraborate flux, 
which also included an oxidizing agent (lithium 
nitrate), and then the samples were poured into 
a platinum mold. The resultant disk was then 
analyzed by XRF spectrometry. The analytical 
accuracy and precision of the XRF analyses 
are <5% for major elements. XRF analysis was 
performed in conjunction with a loss on igni-
tion analysis at 1000 °C. For XRF, a prepared 
sample was added to the lithium metaborate/
lithium tetraborate flux, mixed well, and fused 

in a furnace at 1025 °C. Then, the resulting melt 
was cooled and dissolved in an acid mixture con-
taining nitric, hydrochloric, and hydrofluoric ac-
ids. This solution was then analyzed by ICP-MS. 
A prepared sample was digested with perchloric, 
nitric, hydrofluoric, and hydrochloric acids. The 
residue was topped up with dilute hydrochloric 
acid, and the resulting solution was analyzed by 
ICP-AES. The results were corrected for spectral 
interelement interferences.

RESULTS

Zircon U-Pb Geochronology

The zircon U-Pb isotopic data are given in 
Table S2 (see footnote 1). Most zircon grains are 
80–200 μm in length with length/width ratios of 
1:1–2:1 and display oscillatory zoning in CL im-
ages (Fig. 4). The analyzed zircon grains from all 
samples show variable U (60–3080 ppm) and Th 
(17–758 ppm) contents with Th/U ratios ranging 
from 0.19 to 0.96, indicating a magmatic origin. 
The U-Pb data is summarized in Figure 5. The 
22, 26, 27, 19, and 27 analytical spots of zir-
con grains from the granite samples WJ1117, 
WJ1144, 18AK01, 18HATU, 18NKM01, and 
18TCG01 yielded weighted mean 206Pb/238U ages 
of 298.3 ± 1.8 Ma (n = 22, mean square weight-
ed deviation [MSWD] = 0.9), 302.3 ± 1.9 Ma 
(n = 26, MSWD = 0.9), 305.4 ± 1.3 Ma 
(n = 27, MSWD = 0.1), 301.8 ± 1.4 Ma 
(n = 19, MSWD = 0.1), 304.5 ± 1.4 Ma (n = 27, 
MSWD = 0.1), and 306.6 ± 1.8 Ma (n = 22, 
MSWD = 0.8), respectively (Figs. 5A–5F). All 

Figure 4. Cathodoluminescence images of representative zircon grains analyzed for U-Pb 
and O isotopes of the granites in the West Junggar, NW China. SIMS—secondary ion mass 
spectrometry.
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Figure 5. U-Pb concordia diagrams showing zircon ages obtained by laser ablation–inductively coupled plasma–mass spectrometry for the 
granites in the West Junggar, NW China.
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weighted means correspond to single popula-
tions without any data over dispersion (Spencer 
et al., 2016).

Major and Trace Element Geochemistry

Whole-rock major and trace element compo-
sitions are given in Table S3 (see footnote 1). All 
samples of the granitic intrusions from the West 
Junggar show similar geochemical character-
istics. They have high SiO2 (71.4–78.4 wt%), 
total alkali (Na2O + K2O = 7.9–9.6 wt%) con-
tents and low Al2O3 (10.7–14.5 wt%), MgO 
(0.01–0.5 wt%), FeOT (0.9–2.5 wt%), CaO 
(0.4–1.7 wt%), and P2O5 (0.02–0.08 wt%) 

contents, and plot in the field of high-K calc-
alkaline series (Fig.  6A). Accordingly, they 
have high FeOT/(FeOT + MgO) (0.8–1.0) and 
(K2O + Na2O)/CaO (5–21) values, mainly 
falling in the ferroan field (Fig.  6B). In the 
total alkali versus silica diagram, all samples 
are sub-alkaline and plot in the granite field 
(Fig.  6D). They show low A/CNK (0.91–
1.04) values (A/CNK = molecular Al2O3/
(CaO + Na2O + K2O)), indicating metalumi-
nous to weakly peraluminous compositions 
(Fig. 6D). These granites have high total rare 
earth element (REE) contents and show relative-
ly flat normalized REE patterns (La/Yb)N = 2.7–
8.1) with pronounced negative Eu anomalies 

(Eu/Eu Eu /  = 0.1 0.5)( )*
N

2 SmN GdN× −  (Fig. 
7A). They have high concentrations of high 
field strength elements (e.g., Zr, Th, and U) 
and large-ion lithophile elements (e.g., K, Rb, 
and Ba) and show negative Nb, Ta, Sr, P, and Ti 
anomalies (Fig. 7B).

Zircon Hf-O Isotopic Geochemistry

The zircon Lu-Hf and O isotopic data for 
the studied granites are given in Table S4 
(see footnote 1). Hf-O isotopic compositions 
were determined from the same zircon grains 
with zircon U-Pb analysis. Initial 176Hf/177Hf 
ratios denoted as εHf(t) values, and Hf model 

A B

C D

Figure 6. (A) K2O-SiO2 classification diagram is after Gill (1981); (B) SiO2 versus FeOT/(FeOT +MgO) (Frost et al., 2001); (C) SiO2-(Na2O + K2O) 
diagram (Middlemost, 1994); (D) A/NK versus A/CNK (Maniar and Piccoli, 1989), Al/(Ca + Na+K) = Al2O3/(CaO + Na2O + K2O), Al/
(Na+K) = Al2O3/(Na2O + K2O), molecular ratio.
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ages were also calculated based on crystal-
lization ages from the U-Pb dating (Table 
S2). All granites are characterized by high 
εHf(t) values (+12.4 to +15.5) and distinctly 

young Hf model ages of 328–527 Ma. Zircon 
oxygen isotopic ratios for these granites are 
higher in δ18O values (7.2‰–11.9‰) than 
those (5.3 ± 0.6‰, 2SD) of igneous zircons 

occurring in mantle-derived magmas (Val-
ley, 2003).

DISCUSSION

Geochemical Affinities

Granites are generally divided into S-type, I-
type, and A-type (Collins et al., 1982; Whalen 
et al., 1987). Firstly, these granites in the West 
Junggar differ from strongly peraluminous S-
type granites by low A/CNK (<1.1) and absence 
of muscovite, tourmaline, or garnet (Fig.  6D; 
Chappell and White, 1992; Barbarin, 1999). 
Secondly, they display prominent negative Ba, 
Sr, P, Eu, and Ti anomalies (Figs. 7A and 7B), 
which, together with their high 10,000 × Ga/Al 
ratios and high Zr contents and zircon satura-
tion temperatures (TZr = 794–906 °C), are dis-
tinct from highly fractionated granites and I-type 
granites, but similar to typical A-type granites 
(Whalen et al., 1987; Eby, 1990, 1992). Finally, 
they contain diagnostic minerals (i.e., hasting-
site and iron biotite), which also indicate their 
close affinity with A-type granites (Eby, 1992; 
Tang et al., 2012; and this study). In the discrim-
ination diagrams of FeOT/MgO and Zr versus 
10,000 Ga/Al, they plot in the A-type granite 
field of Whalen et al. (1987) (Figs. 8A and 8B). 
In the Nb-Ce-Y and Nb-Ce-3*Ga diagram, they 
can be further classified as A2-type granites 
(Eby, 1992) (Figs. 8C and 8D). Therefore, we 
conclude that the granitic intrusions in this study 
belong to A2-type granites.

Petrogenesis of the A-Type Granites

Petrogenetic models of A-type granite most-
ly involve differentiation of basaltic magma or 
partial melting of mafic lower crust (Bonin, 
2007; Frost and Frost, 2011). Magmas of this 
kind of origin will have δ18Ozrn values equal to 
or slightly higher than that of mantle zircon 
(5.3 ± 0.6‰, 2SD) (e.g., Kemp et  al., 2007; 
Valley, 2003). Partial melting of old crustal 
components will generate high δ18Ozrn values 
(>8.0‰) A-type granites, but with crustal Sr-
Nd-Hf isotopic compositions (Huang et  al., 
2011). The studied A-type granites are meta-
luminous to weakly peraluminous with alumi-
num saturation index lower than 1.1 (Fig. 6D; 
White and Chappell, 1977), and have low 
initial 87Sr/86Sr ratios of 0.7030–0.7045, high 
εNd(t) values of +6.3 to +8.5 (Geng et al., 2009; 
Tang et  al., 2012) and high εHf(t) values of 
+12.4 to +15.5 (Table S4). The above isotopic 
compositions indicate a depleted mantle-like 
source (Fig. 9A). However, they are character-
ized by high SiO2 (71.4–78.4 wt%) and low 
MgO (0.01–0.45 wt%), Cr (<19 ppm), and Ni 

A

B

Figure 7. (A) Chondrite-normalized rare earth element patterns. (B) Primitive mantle nor-
malized trace element diagrams for the granitic batholiths in West Junggar, NW China. The 
chondrite, primitive mantle data are from Sun and McDonough (1989).

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/doi/10.1130/B35790.1/5198666/b35790.pdf
by China Geological Library user
on 16 December 2020

Reviewer
高亮

Reviewer
高亮



Jiyuan Yin et al.

10 Geological Society of America Bulletin, v. 130, no. XX/XX

(<6 ppm) contents, ruling out the involvement 
of mantle rocks in the magma source or inten-
sive melt-mantle interaction. A small number of 
inherited zircon grains have been found in the 
A-type granites in the West Junggar and their in-
herited cores yielded mean ages of 329–322 Ma 
(Geng et al., 2009; Tang et al., 2019), which 
are similar to those of the Early Carboniferous 
volcanic rocks or those of detrital zircon from 
the Early to Late Carboniferous sedimentary 
rocks (Geng et al., 2011; Choulet et al., 2012). 
In addition, the Early Carboniferous volcanic 
rocks consistently display depleted mantle-like 
Sr-Nd isotopic compositions (initial 87Sr/86Sr 
ratios = 0.7034–0.7054, εNd(t) = +4.2 to +7.7) 
(Geng et al., 2011). The Early to Late Carbon-

iferous arc-related volcanogenic sedimentary 
rocks are composed of greywacke, sandstone, 
and microconglomerate, all of which have posi-
tive zircon εHf(t) values of +5 to +17 (85% of 
the data are between +10 and +16), indicating 
a depleted mantle-like magma source (Choulet 
et al., 2012). Thus, the above isotopic data in-
dicate that the studied A-type granites could be 
derived from the Early Carboniferous to Late 
Carboniferous arc volcanic/sedimentary rock 
or the underplated juvenile materials. Zircon 
is extremely retentive of the magmatic O iso-
tope and zircon in equilibrium with pristine 
mantle-derived melts have mantle-like δ18Ozrn 
values (5.3 ± 0.6‰, 2SD; Valley, 2003). Thus, 
zircon δ18O reflects the primary δ18O of the 

magma in which the zircon crystallized, but is 
much less susceptible to alteration than the O 
isotopic composition of whole-rock (δ18OWR) 
(Jeon et al., 2012). In general, the δ18O values 
of arc magmas are overlapping or a little bit 
higher than those of pristine mantle-derived 
melts (5.3 ± 0.6‰, 2SD) (Bolhar et al., 2008). 
The A-type granites in this study have much 
higher zircon δ18O values (7.2‰–11.9‰), sug-
gesting the existence of supracrustal rocks in 
their magma sources (Figs. 9A and 9B; Kemp 
et al., 2007). Consequently, the zircon Hf and 
O isotopic data together suggest that juvenile 
supracrustal material was an important compo-
nent in the magma source for the studied A-type 
granites.

A

C D

B

Figure 8. (A and B) FeOT/MgO and Nb versus 10,000 Ga/Al discrimination diagram (Whalen et al., 1987). (C and D) Discrimination dia-
grams for the subdivision of the A-type granites by Eby (1992).
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Contribution of Juvenile Sediment in the 
Formation of A-Type Granites

The Paleozoic oceanic subduction-accretion 
system generated the Early to Late Carbonifer-
ous volcanic or sedimentary rocks in the West 
Junggar. In contrast to magmatic activity at 
mid-ocean ridges or within-plate settings, arc 
magmas are highly explosive because of the 
enrichment of volatile phases. Therefore, the 
extrusive products of arc volcanism often oc-
cur as pyroclastic deposits into intra-arc and 
arc flanking basins of the adjoining forearc 
and back-arc (Cawood et al., 2009). Composi-
tional differences of magmas produced by par-
tial melting of different source rocks, such as 
metabasalts, metatonalites, metagreywackes, 
and metapelites, under variable melting con-
ditions may be visualized in terms of molar 
oxide ratios, such as Al2O3/(MgO + FeOT) 
and CaO/(MgO + FeOT) (Altherr et al., 2000). 
The studied A-type granites plot in the source 
field of metagraywacke (Fig.  10), implying 
that the magma source of the high δ18Ozrn 
and high εHf(t) A-type granites possibly con-
tained the Early to Late Carboniferous (meta)
graywackes. However, previous geochemical 
studies suggest that most granites, even those 
considered as typical examples of “S-type” 
cannot be derived solely from metamorphosed 
crustal sediments (Collins, 1996; Healy et al., 
2004), although the eastern Himalayan leuco-
granites could be derived solely from crustal 
sediments (Hopkinson et al., 2017) and they 

show typical geochemical characteristics of 
S-type granites rather than A-type granites. 
In this study, we used the Junggar Carbonif-
erous metagraywackes as the source to model 
their melting process, and the results show that 
the A-type granitic melt cannot be formed by 
batch melting in any proportion. Given that 
plagioclase is strongly enriched in Sr and Eu, 
and garnet is strongly depleted in light-REEs 
and enriched in heavy-REEs (HREEs) and 
Y, the distinct negative Sr and Eu anomalies, 
low La/Yb and Sr/Y ratios of the studies A-
type granites likely reflect the presence of 
residual plagioclase (Pl) with little or with-
out garnet (Grt) in their sources (Fig.  11A). 
In addition, pressure–temperature conditions 

for partial melting of crustal rocks based on 
experimental data are summarized in the lit-
erature (Wang et al., 2016). They indicate that 
the lower limit of Grt stability is 0.5 GPa, and 
Pl will disappear at pressures >1.2–1.5 GPa 
(Rapp et  al., 2003; Wang et  al., 2016), the 
studied A-type granites were likely generated 
by high temperature melting (up to 906 °C) of 
crustal source rocks in the pressure range of 
≤0.5 GPa (corresponding to depths of <15 km; 
Wang et al., 2016). Besides, the West Junggar 
A-type granites are characterized by relatively 
high HREE (such as Yb = 2.6–6.6 ppm) and Y 
(Y = 24.6–80.4 ppm) contents, and negative 
Eu, Sr, and Ba anomalies, further suggesting 
that partial melting most likely occurred in a 

A B

Figure 9. Correlation plots between age and Hf-O isotopic data for the granites in the West Junggar, NW China; εHf(t) = +13.2 ± 1.1 is used 
as the new continental crust ranges (Dhuime et al., 2011). The field of mantle- derived zircon (Valley et al., 2005) is shown for comparison. 
Hf-O isotopic data of West Junggar gabbro and diorite is from Tang et al. (2019).

Figure 10. Molar Al2O3/(MgO +  
FeOT) versus molar CaO/(MgO  
+ FeOT) diagram for Late Car-
boniferous to Early Permian 
A-type granites in the West 
Junggar, NW China (after 
Altherr et  al., 2000). Data of 
whole rock major element com-
positions are from Table S3 (see 
footnote 1).
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relatively shallow depth (i.e., middle crust) 
(Figs.  7A and 7B; McKenzie and O’Nions, 
1991), and the residual Pl played an important 
role in their  magma genesis. REE modeling as-
sumes that partial melting took place under Pl 
stability condition without the involvement of 
Grt and the initial mineralogical assemblages 
had a clinopyroxene: Pl ratio of 35:65. Our re-
sults show that the REE patterns for the West 
Junggar A-type granites can be successfully 
reproduced by 10%–20% batch melting with 
a (15% to 50% sediment plus 85–50% middle 
crust) melt component (Fig. 11B). Also, a bi-
nary mixing calculation for Hf-O isotopes in-
dicates that 15%–50% of juvenile sedimentary 
rocks were involved in the source of the studied 
A-type granites (Fig. 12C). Therefore, the pro-
portion of such juvenile sediments may reach 
∼50% and they can play an important role in 
the formation of the studied A-type granites.

Implication for Geodynamic Process and 
Crustal Evolution

The West Junggar accretionary prism was 
formed during the Early Cambrian to Late Car-
boniferous with depleted mantle-like Sr-Nd-Hf 
isotope compositions. Although voluminous 
granites also outcropped in the West Junggar re-
gion, there is no consensus on their origin, and 
competing petrogenetic models were proposed, 
including partial melting of a depleted mantle 
reservoir (Han et al., 1997; Chen and Arakawa, 
2005); partial melting of juvenile mafic lower 
crust (Chen and Jahn, 2004; Geng et al., 2009); 
and partial melting of residual oceanic crust 
(Tang et al., 2012). Different models imply dif-
ferent crust formation and evolution processes. 
Although zircon Hf isotopic compositions of 
the studied A-type granites are  comparable to 
those of the depleted mantle, their δ18O values 

of 7.2‰ to +11.9‰ are much higher than those 
of the mantle, thus juvenile sedimentary rocks 
must have been involved in the magma source. 
Therefore, the A-type granites are unlikely gen-
erated by partial melting of a depleted mantle 
reservoir or juvenile lower crust, which will 
show mantle-like δ18Ozrn values (5.3 ± 0.6‰, 
2SD; Valley, 2003).

As discussed above, both of REE modeling 
and binary mixing calculation of Hf-O iso-
topes indicate that 50% of sedimentary rocks 
and 50% of middle crust were involved in the 
source of the studied A-type granites. Obvi-
ously, the injection of sediment is very impor-
tant. The volcanogenic sediments were formed 
by weathering of volcanic arc and deposited in 
the adjacent forearc basin or trench (Cawood 
et al., 2009). The sediments in the trench were 
subducted to the depth greater than 50 km with 
the oceanic plate (Scholl and von Huene 2007). 
However, most of the sediments have positive 
buoyancy relative to the upper mantle and rise 
to the bottom of the arc crust (Behn et al., 2011; 
Hacker et al., 2011). As discussed above, the 
A-type granites were possibly formed by high-
temperature (up to 906 °C) and low-pressure 
setting (<0.5 Gpa). At the same time, the coex-
istence of A-type granites, charnockites, ada-
kites, and sanukitoid dikes in the West Jung-
gar also indicates a high-temperature regime 
during the Late Carboniferous. Therefore, an 
additional heat source from the mantle is re-
quired to produce the high-temperature rock as-
semblages in the West Junggar. Asthenospheric 
upwelling induced by ridge subduction was 
speculated to have occurred in the West Jung-
gar during the Late Carboniferous (Geng et al., 
2009; Tang et al., 2010, 2012; Yin et al., 2010, 
2013, 2015). This process can also lead to the 
melting of the underlying sediments. Subse-
quently, these sediment melts rose and mixed 
with the melts in the middle crust to form A-
type granites.

The West Junggar arc was developed from 
Cambrian to Carboniferous (Xiao et al., 2008). 
In the Early to Late Carboniferous, a large 
volume of volcanic rocks erupted in the West 
Junggar (Geng et  al., 2011; Choulet et  al., 
2012). Meanwhile, plutons with 330–311 Ma 
gabbroic and dioritic compositions were em-
placed (Tang et al., 2019). These rocks are char-
acterized by low δ18O values (4.5‰–6.9‰), 
implying their magma sources were domi-
nated either by underplated mantle-derived 
rocks or by unaltered oceanic crust (Fig. 9B). 
These post-311 Ma intrusive rocks are mainly 
granitic in composition and have much higher 
δ18O values (7.2‰ to +11.9‰) (Fig. 9B). The 
abrupt change in oxygen isotopic composi-
tions may indicate that a significant amount of 

Figure 11. (A) La/Yb versus 
Sr/Y (Wang et  al., 2016). This 
diagram indicates the effects 
of residual garnet (Grt) and 
plagioclase (Pl) during par-
tial melting. F1–F3 are crustal 
melts in the stability fields of 
Grt with little or no Pl, with Pl 
and Grt, and Pl with little or no 
Grt, respectively. The data of 
Eocene Himalayan high Sr/Y 
granites is from Zeng et  al. 
(2011). (B) The trace element 
pattern of an average composi-
tion for different pluton in the 
West Junggar, NW China. The 
granites are closely matched by 
a mixture of 15%–50% grey-
wacke melt and 85%–50% 
middle crust melt. The trace 
element compositions of the 
juvenile sediment (JS) are rep-
resented by an average Early 
Carboniferous greywacke 
from the northeast Junggar 
(Tao et  al., 2014). The global 
weighted middle crust compo-
nent is granodiorite (Rudnick 
and Gao, 2014). Therefore, the 
trace element compositions 
of the middle crust (MC) are 
represented by the Late Car-
boniferous granodiorite in the 

West Junggar (Chen and Arakawa, 2005). Bulk solid/melt partition coefficients of andesitic-
dacitic melts in equilibrium with a Pl residuum (35% clinopyroxene and 65% plagioclase). 
Individual mineral Kd values are from McKenzie and O’Nions (1991) Bulk solid/melt parti-
tion coefficients for sediment melting are from Johnson and Plank (1999). Composition of 
JS and MC melts are based on the assumption of 20% and 10% batch melting, respectively.
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sedimentary  materials were deeply buried by 
subduction in the  accretionary prism and were 
melted post-311 Ma. It is also a manifestation 
of the transformation of the kinetic process 

(i.e., normal subduction to ridge subduction). 
It was the melting of the juvenile sedimentary 
material in the oceanic arc system that pro-
moted crustal maturation in the region.

CONCLUSIONS

In situ zircon laser ablation–inductively cou-
pled plasma–mass spectrometry dating revealed 

A

C D

B

Figure 12. Zircon εHf(t) versus zircon δ18O diagrams for magmatic zircon of the Late Carboniferous to Early Permian A-type granites in 
the West Junggar, NW China. Juvenile sediment (i.e., greywacke) and middle crust are chosen as two plausible endmembers. The Early 
Carboniferous volcanogenic sedimentary rocks in studied area have positive zircon εHf(t) values of +5 to +17 (85% of the data are between 
+10 and +16), and the lowest εHf(t) value in the A-type granites is +12. Thus, we assume that εHf(t) value of juvenile weathered sediment is 
+12. Oxygen isotopic variations in greywackes on Earth are between 10‰ and 19‰ (Bindeman, 2008). We selected four groups of oxygen 
isotope values from 12‰, 14‰, 16‰, 18‰, respectively, since there is no available oxygen isotope of greywacke in the studied area as a ref-
erence. The εHf(t) and δ18O values of the Late Carboniferous diorite and granodiorite in the West Junggar are +12 to +17.5 and 5‰ to 6.9‰, 
respectively (Tang et al., 2019). We assume that εHf(t) and δ18O values of middle crust are +14.5 and 6‰, respectively. HfJS/HfMC is the ratio 
of Hf concentration in the juvenile weathered sediment over parental middle crust indicated for each mixing curves, and the small ticks 
on the curves represent 10% mixing increments by assuming the juvenile middle crust and the juvenile weathered sediment. The field of 
mantle-derived zircon (Valley, 2003) is shown for comparison. Four model calculations were carried out and obtain the four proportions of 
sediment addition, i.e., 25%–70%, 20%–55%, 15%–50%, 10%–40%, respectively. All four results show that sediments play an important 
role in the formation of A-type granites. Among them, the oxygen isotope value of greywacke is 16‰, the A-type granites contain 15%–50% 
sediments, close to the model result of rare earth elements (Fig. 11). JS—juvenile sediment; MC—middle crust.
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that the A-type granites were emplaced in the 
period of 307–298 Ma. All these A-type gran-
ites have similar Hf isotope compositions (+12.4 
to +15.5) indicating a supra-chondritic magma 
source. However, their high δ18Ozrn (7.2‰–
11.9‰) values show that their magma sources 
contained a large amount of supracrustal materi-
als (∼50%). This study shows that zircon Hf-O 
isotopic components are effective in deciphering 
the involvement of the juvenile supracrustal ma-
terial in the source of granitic magma and thus 
tracing the recycling of juvenile supracrustal ma-
terials. The study shows that the re-melting of 
juvenile sediments in oceanic arc systems may 
promote crustal maturation.
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