新疆塔什库尔干温泉地区花岗岩体侵入与新生代构造 变形:对东北帕米尔中新世构造演化的启示^{*}

蔡志慧 何碧竹 刘若涵 CAI ZhiHui, HE BiZhu and LIU RuoHan

自然资源部深地动力学重点实验室,中国地质科学院地质研究所,北京 100037

Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resource, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

2020-04-08 收稿, 2020-07-15 改回.

Cai ZH, He BZ and Liu RH. 2020. Emplacement of granitic pluton and Cenozoic deformation in the Wenquan region, Tashkorgan, Xinjiang: The implications for the Miocene tectonic evolution of the Northeast Pamir. *Acta Petrologica Sinica*, 36(10):3137-3151, doi:10.18654/1000-0569/2020.10.12

Abstract The Pamir Plateau is one of the most important regions to study effects of the India-Asia continental collision and its continuous convergence. It is characterized by significantly crust thickening and shortening, formation of lots of faults and the gneiss domes as well as volumerous intra-continental magmatism. The previous works on the intra-continental magmatic rocks in Pamir area focused on their geochemical compositions and indicative tectonic settings, but few studies on the relationship between the formation of the magmatism and the regional deformation. This paper presents new structural geology, U-Pb and Ar-Ar chronological data in the Wenquan area, Tashkorgan, Northeast Pamir, reveals the relationship between the emplacement of granitic pluton and the regional deformation. The U-Pb dating results showed that the granitic veins in the Wenquan area were formed at 11.8 ±0.2Ma. They and their wall rocks cooled to Ar-Ar closure temperature at 10.8 ± 0.1Ma. The inherited zircons in Miocene granitic veins and detrital zircons in wall rocks display quite different U-Pb age characteristics. They were most likely derived from the Songpan-Ganzi and Central Pamir terrains, respectively. The granites show a non-deformed feature. The surrounding schists are manifested as the E-W striking extensional structures, reflecting an extensional stress field. Combined with regional tectonic settings, it indicates that the Miocene granitic veins in the Wenquan region are the partial melting products from the structural terrane of Konger Shan and Muztaghata. The granites were formed during the transformation stage from the crustal thickening to local crustal extension in the Northeast Pamir. It is also possible that the Konger extensional fault system was activated during this process. Until 6 ~ 4Ma, rapid slipping along the Kongershan extensional fault system and exhumation of the Konger-Muztaghata gneiss dome commenced. Key words Northeast Pamir; Miocene magmatic rocks; Deformation

摘要 帕米尔高原是受到印度-亚洲大陆碰撞、持续汇聚影响最显著的地区之一,以强烈地壳增厚和缩短、大量断裂和片麻岩穹窿的形成以及广泛的陆内岩浆活动为特征。以往有关帕米尔陆内岩浆岩的讨论多集中于对其地球化学成分及其所指示的构造背景的研究方面,而对岩浆形成与大型新生代构造之间的联系研究较少。本文通过对东北帕米尔塔什库尔干温泉地区新生代花岗岩及其围岩中锆石 U-Pb 和 Ar-Ar 年代学研究,结合该地区新生代构造变形分析,揭示岩浆侵入与区域构造变形之间的关系。U-Pb 及 Ar-Ar 测年结果显示温泉地区花岗岩脉形成时代为中新世(11.8±0.2Ma),其及其围岩在 10.8±0.1Ma 冷却到 300℃左右;中新世花岗岩脉中继承锆石及围岩片岩中碎屑锆石 U-Pb 的年龄分布特征迥异,它们分别具有类似 松潘-甘孜地体以及中帕米尔地体的物质来源。花岗岩内部几乎无变形,围岩片岩变形主要体现为近 E-W 向的伸展构造,反映其形成于拉张为主的构造应力环境。结合区域构造背景,推测温泉中新世花岗岩脉为公格尔山、慕士塔格峰构造单元岩石

第一作者简介:蔡志慧,女,1980年生,副研究员,构造地质学专业,E-mail: cai-zhihui@ hotmail. com

^{*} 本文受国家重点研发计划(2019YFA0708601)、国家自然科学基金项目(41302166、41872121)、自然资源部深地动力学重点实验室自主研究课题(J1901-20-4)、中国地质科学院基本科研业务费(S2003、JYYWF20182103、JYYWF20180903)和中国地质调查项目 (DD20190066、DD20190060)联合资助.

部分熔融产物,是在东北帕米尔地壳从挤压增厚向局部伸展转换的过程中形成的,此时,公格尔伸展断裂系可能已经开始发育;此后,直到6~4Ma,公格尔伸展断裂系开始快速运动,与之相伴公格尔-慕士塔格片麻岩穹窿快速折返。

关键词 东北帕米尔;中新世岩浆岩;构造变形

中图法分类号 P588.121; P597.3

青藏-帕米尔造山带是世界上最高、最大的高原,是研究 板块动力学、区域大地构造以及地表抬升-剥蚀过程的天然 实验室。新生代印度-亚洲大陆碰撞、持续汇聚过程是形成 青藏-帕米尔造山带的原始动力(Tapponnier et al., 1981, 2001; Burtman and Molnar, 1993; Clark and Royden, 2000; Yin and Harrison, 2000; DeCelles et al., 2002; Royden et al., 2008)。随着印度陆块向北推进,喜马拉雅及青藏高原腹地 不断隆升,大量物质侧向挤出,同时形成青藏高原东、西两侧 的造山带(Tapponnier et al., 2001)。帕米尔造山带位于青 藏高原的西侧,呈向北凸出的弧形,故又称帕米尔弧形构造 带(图1)。帕米尔弧形构造带是印度/亚洲碰撞效应最强烈 的地区之一,其在新生代之前地壳厚度仅为 25~30km (Burtman and Molnar, 1993), 而深部地球物理资料显示现今 帕米尔地壳厚度可达70km(Mechie et al., 2012)。中新世火 山岩中的捕掳体表明印度-亚洲大陆碰撞初期帕米尔地区岩 浆-沉积岩石组合曾埋深到 > 50 ~ 80km (Ducea et al., 2003)。此外,帕米尔弧形构造带目前的宽度明显小于青藏 高原主体,有的学者认为帕米尔地壳增厚的同时,通过逆冲 推覆等方式发生了强烈缩短变形 (Burtman and Molnar, 1993)

帕米尔弧形构造带受印度-亚洲大陆碰撞及持续汇聚的 影响发生强烈变形不仅体现在地壳的增厚和缩短,还体现在 形成许多大型新生代断裂(Brunel et al., 1994; Murphy et al., 2000; Lacassin et al., 2004; Schwab et al., 2004; Valli et al., 2008; Robinson, 2009; Amidon and Hynek, 2010; Cowgill, 2010; Klemperer et al., 2013) 和片麻岩穹窿 (Robinson et al., 2004, 2007, 2012; Schmidt et al., 2011; Stearns et al., 2013, 2015; Stübner et al., 2013a, b; Rutte et al., 2017a, b)。这些新生代构造一方面是碰撞造山的结 果,另一方面它们也改造着帕米尔地区的构造格局,切断连 续地体,为侧向、深部-浅部物质运移提供途径等。例如,在 帕米尔弧形构造带东部与青藏高原主体相连接的位置,各地 体的宽度明显变窄,并且被许多新生代断裂切断(图1),使 得帕米尔弧形构造带与青藏高原主体中的地体对应关系变 得难以确定;帕米尔弧形构造带的中、高级变质岩折返到地 表过程主要是通过大型断裂及穹窿构造实现的(Robinson et al., 2004, 2007; Schmidt et al., 2011; Stearns et al., 2013, 2015; Stübner et al., 2013a, b; Rutte et al., 2017b; Chapman et al., 2018)。另外,帕米尔弧形构造带受印度-亚洲大陆碰 撞和持续汇聚影响还体现在区内普遍存在中新世陆内岩浆 活动(Jiang et al., 2002, 2012; Ducea et al., 2003; 罗照华 等, 2003; Hacker et al., 2005, 2017; 柯珊等, 2006;

Robinson et al., 2007; Chapman et al., 2018)。许多学者围 绕这些岩浆岩的地球化学成分及其所指示的岩浆成因和构 造背景等展开讨论,指出这些岩浆岩多为中新世时期的钾 质-超钾质岩石,其形成与地壳减压熔融、软流圈上涌有关 (Jiang et al., 2002, 2012; Hacker et al., 2005, 2017)。然 而,有关帕米尔中新世岩浆岩的形成与前面所述该区大型新 生代构造之间的联系则很少有人研究。例如,中新世岩浆的 形成、侵位与大型断裂或片麻岩穹窿等的形成演化之间是否 存在关系?如果有,其相互影响过程如何?造山带是构造变 形、岩浆以及变质过程的综合产物,结合区域构造变形对岩 浆侵入过程的研究是全面认识造山作用的一个重要内容。 选择帕米尔地区与中新世岩浆岩相邻的新生代大型断裂及 片麻岩穹窿等关键位置的构造变形研究,进行构造-岩浆活 动分析,可以为探讨帕米尔造山过程提供更多信息。

在对帕米尔东北部进行野外考察的基础上,我们选取新 疆塔什库尔干温泉地区新生代岩浆岩及其围岩进行构造变 形、U-Pb及Ar-Ar年代学测试分析,其目的是阐述岩浆侵入 过程与公格尔伸展断裂系及慕士塔格片麻岩穹窿构造形成 之间的关系,进一步探讨其对东北帕米尔新生代构造演化的 启示,并为印度-亚洲大陆碰撞后东北帕米尔新生代构造演 化提供科学依据。

1 地质背景

根据若干大型断裂及古老蛇绿岩残片的分布,可将帕米尔弧形构造带划为北帕米尔、中帕米尔、南帕米尔及兴都库 什等几个地体(Burtman and Molnar, 1993; Robinson *et al.*, 2004, 2007; Schmidt *et al.*, 2011; Stübner *et al.*, 2013a) (图1)。

新疆塔什库尔干地区位于帕米尔弧形构造带的东北部, 区内大型新生代构造包括喀喇昆仑断裂、公格尔伸展断裂以 及公格尔-慕士塔格片麻岩穹窿等。喀喇昆仑断裂为区内规 模最大的断裂,前人围绕其规模、走滑位移量、形成时间、以 及对印度亚洲大陆碰撞后物质侧向挤出贡献等方面进行了 广泛讨论(Brunel et al., 1994; Murphy et al., 2000; Lacassin et al., 2004; Schwab et al., 2004; Valli et al., 2008; Robinson, 2009; Amidon and Hynek, 2010; Cowgill, 2010; Klemperer et al., 2013)。除喀喇昆仑断裂之外,帕米尔弧形 构造带东部的新生代公格尔伸展断裂系(Brunel et al., 1994; Robinson et al., 2004, 2007, 2010, 2012; Cao et al., 2013)规模也较大,长约250km,并被认为与北帕米尔中部的 卡拉库尔地堑(Robinson et al., 2004; Amidon and Hynek,

图 1 帕米尔东部构造简图(据 Robinson et al., 2012 修改)

GMD-公格尔-慕士塔格片麻岩穹窿;KKP-卡日巴生-苦子干岩体;KKF-喀喇昆仑断裂;KES-公格尔伸展断裂系;TAF-塔阿西断裂;NK-公格尔山北地区.①温泉构造单元;②慕士塔格峰西构造单元;③慕士塔格南构造单元;④塔阿西南部构造单元; ⑤公格尔山及慕士塔格南构造单元;⑥马尔洋构造单元.B-B′ 为东北帕米尔 NE 向剖面,见图 8

Fig. 1 Sketch tectonic maps of the eastern Pamir region (after Robinson *et al.*, 2012)

2010)具有近一致的初始活动时间,二者的形成皆晚于早中 新世,标志着东北帕米尔与北帕米尔从地壳增厚到局部伸展 转换的时间(Robinson et al., 2004; Amidon and Hynek, 2010)。Robinson et al. (2004)提出公格尔山正滑断裂 E-W 向大规模伸展开始于中新世,并认为其演化模式为由公格尔 山向西扩展或由木吉向东扩展。除了上述新生代大型断裂 之外,东北帕米尔塔什库尔干地区另外一种显著的新生代构 造为片麻岩穹窿。区内的片麻岩穹窿主要为公格尔-慕士塔 格片麻岩穹窿,其形成与公格尔山伸展断裂系的演化密切相 关(Robinson et al., 2004, 2007, 2010, 2012)。Cao et al. (2013)也强调这一点,并指出慕士塔格-公格尔片麻岩穹窿 快速折返时间集中在 6~4Ma 和 3~1Ma。Thiede et al. (2013)从低温热年代学研究的角度出发,指出东北帕米尔片 麻岩穹窿形成于同造山、E-W向伸展作用过程中。Cai et al. (2017)对慕十塔格麻岩穹窿西侧和东侧两条剪切带进行了 构造变形及年代学分析,指出二者分别具有向 W-SW 和向 E 剪切指向,在12~8Ma时位于中上地壳。

除了上述大型断裂及片麻岩穹窿之外,东北帕米尔塔什

库尔干地区还包括大量新生代岩浆岩(Jiang et al., 2002, 2012; 罗照华等, 2003; 柯珊等, 2006),如卡日巴生-苦子干岩 岩体及咎坎岩体(Jiang et al., 2002)。卡日巴生-苦子干岩 体属于 Sares-Murgab 岩体的一部分,位于塔什库尔干河谷西 侧,侵入在二叠系及前寒武纪布伦阔勒群中(河南省地质调 查院, 2004^①)。锆石 U-Pb 同位素年代学研究表明卡日巴 生-苦子干岩体形成时代为 10 ~ 11.9Ma(柯珊等, 2006; Robinson et al., 2007; Jiang et al., 2012; 徐晓尹等, 2017), 岩浆具有中新世加厚下地壳(Jiang et al., 2002)或地幔 (Jiang et al., 2012)来源,或成分不同的岩浆具有地幔和地 壳不同来源(罗照华等, 2003)。

2 塔什库尔干温泉地区新生代岩体及其围 岩的构造变形特征

塔什库尔干温泉新生代岩体位于温泉剖面西段(图2、 图3a),其为卡日巴生-苦子干岩体东侧一部分(图1)。温泉 剖面的岩体主体为花岗岩,主要成分包括长石、石英及云母 等。另外在岩体主体的围岩布伦阔勒群片岩中还侵入许多 花岗岩脉,其成分与岩体主体花岗岩成分相似。这些较小的 花岗岩脉规模大小不等,若干厘米至若干米宽;形态各异,呈 条带状(图3b),透镜状(图3c,e)或"布丁"状(图3f)。内部 无明显变形,矿物颗粒自形且粒度较大,靠近围岩布伦阔勒 群片岩位置颗粒变细,具有冷凝边,反映了花岗岩脉与片岩 之间的侵入接触关系。

温泉地区布伦阔勒群主要为云母长石石英片岩,变质程 度较低,主要体现在形成绢云母和绿泥石等低温变质矿物, 局部可见原生沉积层理。布伦阔勒群岩石变形主要分为二 期:第一期表现为沿片岩层理方向面理化 D1(图 3b-h),面理 产状以中等-高角度向 NE 倾为主(图 3b-h)。该期变形作用 早于新生代花岗岩侵入,但根据本文数据无法限定其具体时 代。第二期为与花岗岩侵入有关的剪切变形 D2。在新生代 岩体与布伦阔勒群片岩接触位置岩石发生较明显变形。由 长石及石英等矿物定向组成的线理产状向 E、SE 方向倾伏 (图 3d)。片岩中可见细小"σ"形石英脉及不对称褶皱形石 英脉等,显示其经历正滑韧性剪切过程,剪切指向为 E、SE 方 向(图 3f-h)。花岗岩脉产状明显与片岩的面理(软弱面)相 关,多沿着片岩面理侵入、局部位置小角度斜切面理(图 3c, e, f)。而稍大些的花岗岩脉常常表现为部分斜切片岩早期 面理(图 3b),反映了片岩面理形成早于花岗岩年龄。有的 透镜状花岗岩脉呈"σ"形,显示逆冲运动指向(图 3e)。与其 紧邻的片岩局部的不对称褶皱也显示逆冲的运动特征(图 3d),这反映了花岗岩脉由下向上逆冲侵入的过程。与其非

① 河南省地质调查院. 2004. 中华人民共和国 1/25 万塔什库尔干塔吉克自治县幅(J43C003003)、克克吐鲁克幅(J43C003002)、叶城县幅(J43C003004)区域地质调查报告

图 2 东北帕米尔塔什库尔干地区地质简图(a)、温泉-库克西克剖面图(b, 剖面位置见图 a 中 A-A')及(c)E-W 向温泉剖 面图

WMSZ-慕士塔格西剪切带;KS-库克西克剪切带;SDF-辛迪断裂. 同位素年龄来源:(0)本文;(1)Cai et al., 2017;(2)Robinson et al., 2007; (3)徐晓尹等,2017;(4)柯珊等,2006;(5)Jiang et al., 2012;(6)Robinson et al., 2004

Fig. 2 Geological map of Tashkorgan area in Northeast Pamir (a), Wenquan-Kukexilik cross-section (b, see A-A' in the Fig. 1a) and E-W trending Wenquan corss-section (c)

常紧邻的片岩中的不对称褶皱由于岩体向上拖曳作用而呈 现逆冲特征。有的花岗岩脉侵入过程受到片岩中断裂或节 理的影响而产生位移等明显形状改变(如图 3f 中的褶皱状 花岗岩脉的形态受到小断裂的影响)。"布丁"状花岗岩脉 则显示被"拉断"的形态,且"布丁"中各段岩体非矩形而是 呈透镜状(图 3f),反映了花岗岩脉的侵入与水平方向的拉张 是同时发生的。 显微镜下,温泉花岗岩脉中长石、石英及云母等矿物自 形,不显示定向排列特征(图4a)。布伦阔勒群片岩中矿物 定向排列(图4b-d),石英变形特征为有的边界不平滑(图 4b,c)、具有带状消光(图4c);有的石英边部显示细小颗粒 化、消光位置明显发生改变(图4b,c),体现了其以亚晶粒旋 转和膨凸为主的塑性变形特征。长石主要以碎裂变形为主, 斜长石双晶纹较平直(图4b,c)。石英带状消光位置与岩石

图 3 温泉地区野外地质现象

Fig. 3 Field photos of outcrops in the Wenquan region

面理之间锐角夹角指示下滑的剪切指向(图4c),为D2变形 产物。面理被花岗岩脉斜切或横切的片岩样品显微镜下石 英、长石及云母等定向排列,石英明显拉长,剪切指向不明显 (图4d),此期变形早于花岗岩脉的侵入,为D1。有的片岩样 品中局部显示石英近等粒状、边部较平直且常与相邻颗粒呈 120°夹角,黑云母颗粒碎小,边界不平整(图4b,d),说明流 体的存在,黑云母被溶蚀,岩石经历静态重结晶过程(Evans et al., 2001)。

总而言之,塔什库尔干温泉地区新生代构造变形在花岗 岩体内部不明显,而主要表现在围岩布伦阔勒群片岩中,其 变形主要分为二期:第一期体现为沿片岩层理方向的面理 化 D1;第二期为韧性下滑剪切 D2。D2 整体叠加于 D1 之

图 4 温泉样品薄片显微照片 Bt-黑云母; Fsp-长石; Pl-斜长石; Qz-石英

Fig. 4 Microscopic photographs of petrologic thin sections from the Wenquan region

上,虽然由于岩体侵位造成应变分布不均使得片岩局部显 示逆冲特征,但总体反映了此时温泉地区处于拉张的应力 环境。

3 塔什库尔干温泉地区岩石同位素年代学 特征

3.1 样品描述

采集塔什库尔干温泉地区布伦阔勒群云母长石石英片 岩 XK4-1-2 与 XK4-1-8,以及侵入到布伦阔勒群中的花岗岩 脉(约50cm 宽)样品(XK4-1-3),采样点见图 2c。片岩 XK4-1-2 与 XK4-1-8 样品为浅灰色片状变晶结构、块状构造,中等 粒度,主要矿物为石英(50%~60%)、长石(25%~35%)、 黑云母(15%~18%)及白云母(5%~8%)等。花岗岩脉 XK4-1-3 呈中粗粒花岗结构、块状构造(图 4a)。主要由长石 (40%~50%)、石英(30%~40%)以及黑云母(5%~10%) 组成,副矿物主要为铁的氧化物、磷灰石、榍石及锆石等,其 与卡日巴生岩体的矿物组成(柯珊等, 2006)类似,属于花岗 岩系列。

3.2 测试方法

将样品粉碎后用重液和磁力分选方法初步选出锆石, 然后在显微镜下挑选出较完整的、典型的颗粒,将其粘置于 环氧树脂中制靶,打磨抛光,使锆石内部充分暴露,接着进行 阴极发光照相。锆石的阴极发光照相在中国地质科学院地 质研究所完成。LA-MC-ICP-MS 锆石 U-Pb 同位素年代学分 析在中国地质科学院矿产资源研究所 MC-ICP-MS 实验室完 成,分析所用仪器为 Finnigan Neptune 型 MC-ICP-MS 及与之 配套的 Newwave UP 213 激光剥蚀系统。锆石 U-Pb 测年激光 剥蚀所用斑束直径为 25µm, 频率为 10Hz, 能量密度约为 2.5J/cm²,以He 为载气。信号较小的²⁰⁷Pb、²⁰⁶Pb、²⁰⁴Pb、²⁰²Hg 用离子计数器(multi-ion-counters)接收,²⁰⁸ Pb、²³² Th 和²³⁸ U 信 号用法拉第杯接收,实现了所有目标同位素信号的同时接收 并且不同质量数的峰基本上都是平坦的,进而获得高精度的 数据。详细实验测试过程可参见侯可军等(2009)。采用 ICPMSDataCal 程序(Liu et al., 2010)进行数据处理。采用 ISOPLOT 程序(Ludwig, 2003)进行谐和图绘制及加权平均年 龄计算等。

用来进行 Ar-Ar 测年的黑云母分选方法与锆石分选方

图 5 温泉地区样品中锆石的阴极发光图像(a)和 LA-ICP-MS U-Pb 谐和图(b-e)

Fig. 5 Cathodoluminescence images (a) and LA-ICP-MS U-Pb concordia diagrams (b-e) of representative zircons from Wenquan region

法相似:利用重液和磁选方法初步选出黑云母,接着在显微 镜下进一步挑选,然后仔细清洗选出的黑云母。将清洗后 的样品封入石英瓶中送至中国原子能科学研究院进行中子 照射。照射总时间为1440分钟,同时接受中子照射的还有 用来监控的标样。Ar-Ar同位素测年分析在中国地质科学 院地质研究所同位素热年代学实验室完成。使用石墨炉对 样品进行阶段升温加热,每阶段加热10分钟,净化30分 钟。采用 HelixMC 多接收稀有气体质谱仪进行质谱分析, 每组峰值均采集20个数据。所有数据在回归到时间零 点值后再进同位素校正。详细实验流程参考文献(张彦 等,2006)。用 ISOPLOT 程序(Ludwig, 2003)进行坪年龄 计算。

3.3 测试结果

花岗岩脉 XK4-1-3 中的锆石颗粒中等-较大粒度,长轴约 50~150μm,浅褐色-浅黄色,晶体自形程度较高,多为柱状-长柱状。锆石阴极发光图像显示大多数锆石具有明显的岩 浆结晶振荡环带(图 5a),说明其岩浆成因;有的锆石具有较 大、形状不规则的继承锆石核(图 5a)。13 个具有振荡环得 锆石测点的 Th/U 皆大于 0.1(表 1),其²⁰⁶ Pb/²³⁸ U 表面年龄 的加权平均值为 11.8 ± 0.2Ma(MSWD = 1.19)(图 5b)。31 颗继承锆石的年龄范围为 208~2420Ma(图 5c、表 1)。

温泉地区 2 个布伦阔勒群片岩样品(XK4-1-2 和 XK4-1-8)中的锆石呈浅褐色-浅黄色-无色,长轴约 80~150μm,晶体

U-Pb 测年结果
S 皓石
A-ICP-M
「 本 品 L
目泉地区
柏米 尔
东北
表

Northeast Pamir
region,
Wenquan
from
samples
\mathbf{for}
results
dating
U-Pb
zircon
LA-ICP-MS
Table 1

							,										
画	含量(×	< 10 ⁻⁶)	TH, 711			同位素	比值					年龄(1	Ma)			选择统计由	り年龄(Ma)
側尽ち	Th	n		$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	误差 1σ	$^{207}\rm{Pb}/^{235}\rm{U}$	误差 1σ	$^{206}{\rm Pb}/^{238}{\rm U}$	误差 1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	误差 1σ	$^{207}{\rm Pb}/^{235}{\rm U}$	误差 1σ	$^{206}{\rm Pb}/^{238}{\rm U}$	误差 1σ	年龄	误差 1σ
XK4-1-3	(侵入到片	计岩中的花	词岩脉														
01	11285	23217	0.49	0.0503	0.0026	0.0123	0.0006	0.0018	0.0000	209	119	12. 4	0.6	11.4	0.2	11.4	0.2
02	714	1698	0.42	0.1566	0.0077	8.6107	0.4817	0.4095	0.0074	2420	78	2298	51	2213	34	2420	78
03	1181	2254	0.52	0.0593	0. 0206	0.0132	0.0046	0.0018	0.0001	589	606	13. 3	4.6	11.6	0.7	11. 6	0.7
04	231	1206	0. 19	0.0563	0.0013	0.5765	0.0133	0.0740	0.0006	461	56	462	6	460	4	460	4
05	1460	2494	0. 59	0.0616	0.0057	0.2970	0.0249	0.0417	0.0029	629	200	264	20	263	18	263	18
90	235	2404	0.10	0.0624	0.0049	0. 2522	0.0239	0.0329	0.0015	687	173	228	19	208	10	208	10
07	2385	2515	0.95	0.0569	0.0021	0. 6066	0.0211	0.0774	0.0008	487	49	481	13	480	5	480	5
08	5423	12532	0.43	0.0664	0.0085	0.0161	0.0020	0.0018	0.0001	820	269	16. 2	2.0	11. 3	0.4	11. 3	0.4
60	109	187	0.58	0.0735	0.0050	1.8334	0.1249	0.1808	0.0043	1028	142	1057	45	1071	24	1028	142
10	183	619	0.30	0.0673	0.0033	1. 1445	0.0623	0.1228	0.0035	848	102	775	30	747	20	747	20
11	259	442	0.59	0.0627	0.0044	0.7284	0.0675	0.0857	0.0056	869	150	556	40	530	33	530	33
12	1421	3737	0.38	0.0866	0.0174	0.0185	0.0029	0.0019	0.0002	1351	395	18.6	2.9	11.9	1.0	11.9	1.0
13	2779	2456	1.13	0.0581	0.0027	0.6844	0.0325	0. 0853	0.0015	600	100	529	20	527	6	527	6
14	417	783	0. 53	0.0618	0.0040	0.7454	0.0559	0. 0872	0.0037	733	338	566	33	539	22	539	22
15	163	125	1. 30	0.0674	0.0066	1.1127	0.1114	0. 1204	0.0037	850	206	759	54	733	22	733	22
16	238	380	0. 63	0.0704	0.0034	1.5396	0.0768	0. 1593	0.0043	939	100	946	31	953	24	953	24
17	1808	20763	0.09	0.0525	0. 0039	0.0128	0.0010	0.0018	0.0000	306	175	13.0	1.0	11.6	0.3	11.6	0.3
18	263	625	0.42	0.0558	0.0015	0.5826	0.0156	0.0755	0.0006	456	61	466	10	469	4	469	4
19	7330	6361	1. 15	0.0525	0.0101	0.0124	0.0028	0.0019	0.0001	306	389	12. 5	2.8	12. 1	0.6	12. 1	0.6
20	2064	2891	0.71	0.0540	0.0062	0.0121	0.0016	0.0018	0.0001	369	255	12. 2	1.6	11.7	0.3	11.7	0.3
21	869	1206	0.72	0.0618	0.0016	0. 8393	0.0211	0. 0985	0.0012	665	56	619	12	909	7	909	Ζ
22	768	4282	0.18	0.0603	0.0045	0.4569	0.0237	0. 0551	0.0020	613	163	382	17	346	12	346	12
23	1201	3798	0.32	0.0613	0.0021	0.6071	0.0232	0.0714	0.0016	650	72	482	15	445	10	445	10
24	2729	8826	0.31	0.0529	0.0051	0.0135	0.0013	0.0019	0.0001	324	220	13. 7	1.3	12. 3	0.4	12. 3	0.4
25	738	1520	0.49	0.0705	0.0024	0.9082	0.0329	0. 0932	0.0014	943	70	656	17	574	8	574	8
26	4619	10898	0.42	0.0591	0.0044	0.0154	0.0011	0.0019	0.0000	572	164	15.5	1.1	12. 2	0.3	12. 2	0.3
27	213	456	0.47	0.0590	0.0017	0.6265	0.0199	0. 0765	0.0009	569	63	494	12	475	9	475	9
28	1345	4402	0.31	0.0495	0.0056	0.0125	0.0014	0.0019	0.0001	169	248	12. 6	1.4	12. 1	0.4	12. 1	0.4
29	1411	6875	0. 21	0.0616	0.0026	0.6011	0.0244	0.0706	0.0013	661	91	478	15	440	8	440	8

续表 1

Continued Table 1

	含量(×	< 10 ⁻⁶)				同位募	《比值					年龄()	Aa)			选择统计的	1年龄(Ma)
剣尽る	Th	Ŋ		$^{207}{\rm Pb}/^{206}{\rm Pb}$, 误差1 <i>σ</i>	$^{207}\rm{Pb}/^{235}\rm{U}$	误差 1σ	$^{206}\rm{Pb}/^{238}\rm{U}$	误差 1σ	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	误差 1σ	$^{207}\rm{Pb}/^{235}\rm{U}$	误差 1σ	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	误差 1σ	年龄	误差 1σ
30	1346	3446	0. 39	0.1561	0. 0038	8.1564	0. 2592	0.3890	0.0067	2414	41	2249	29	2118	31	2414	41
31	6973	6113	1.14	0.0545	0.0081	0.0140	0.0019	0.0019	0.0001	391	339	14. 2	1.9	12. 4	0.5	12.4	0.5
32	2360	6814	0.35	0.0622	0.0014	0. 6303	0.0205	0.0729	0.0018	683	50	496	13	453	11	453	11
33	2145	2996	0. 72	0.0602	0.0084	0.0142	0.0018	0.0018	0.0001	609	306	14. 3	1.8	11.7	0.3	11. 7	0.3
34	3216	3286	0.98	0.0541	0.0012	0.4346	0.0104	0.0581	0.0006	376	48	366	7	364	4	364	4
35	265	1372	0.19	0.0522	0.0053	0.3143	0.0304	0.0439	0.0026	295	227	278	24	277	16	277	16
36	2934	4428	0. 66	0.0538	0.0025	0. 2814	0.0271	0. 0393	0.0029	365	104	252	21	249	18	249	18
37	477	6771	0.07	0.0700	0.0043	0.4237	0.0362	0.0485	0.0013	928	126	359	26	305	8	305	8
38	2413	4622	0.52	0.0527	0.0038	0. 2502	0.0179	0. 0344	0.0006	317	165	227	15	218	4	218	4
39	1844	20477	0.09	0.0569	0.0029	0.0146	0.0008	0.0019	0.0000	487	111	14.8	0.8	12. 0	0.2	12. 0	0.2
40	1274	4227	0.30	0.0614	0.0020	1.0135	0.0368	0.1191	0.0022	654	69	711	19	725	13	725	13
41	1238	871	1.42	0.0700	0.0037	1. 2367	0.0637	0. 1277	0.0024	928	108	817	29	775	13	775	13
42	427	1861	0. 23	0.0562	0.0026	0.6652	0.0311	0. 0856	0.0020	461	104	518	19	530	12	530	12
43	316	717	0. 44	0.0581	0.0043	0.5721	0.0427	0.0719	0.0022	532	163	459	28	448	13	448	13
4	4643	4639	1.00	0.0561	0.0019	0.6141	0.0206	0.0793	0.0010	457	78	486	13	492	9	492	9
XK4-1-2	计岩																
01	732	1114	0.66	0.0916	0.0042	3.2091	0.1473	0. 2532	0.0916	1458	88	1459	36	1455	24	1458	88
02	738	1826	0.40	0.1743	0.0067	8.5380	0.3460	0.3534	0.1743	2600	31	2290	37	1951	33	2600	31
03	333	700	0.48	0.1585	0.0067	9.9477	0.4099	0.4537	0. 1585	2440	72	2430	38	2412	43	2440	72
64	780	1291	0.60	0.1750	0.0071	11.9115	0.4744	0.4918	0.1750	2606	68	2597	37	2578	4	2606	68
05	223	371	0.60	0.0702	0.0043	1.4943	0.0928	0.1543	0.0702	1000	125	928	38	925	19	925	19
90	1162	1256	0.93	0.0694	0.0029	1.4949	0.0662	0.1557	0.0694	922	81	928	27	933	18	933	18
07	534	660	0.81	0.0643	0.0041	1.1051	0.0710	0.1245	0.0643	750	135	756	34	756	17	756	17
08	908	1183	0.77	0.0644	0.0046	1.0997	0.0754	0.1238	0.0644	754	150	753	36	752	17	752	17
60	682	870	0. 78	0.1308	0. 0046	6.7109	0.2745	0.3706	0. 1308	2109	56	2074	36	2032	37	2109	56
10	238	247	0.96	0.0737	0.0087	1.2542	0.1519	0.1234	0.0737	1031	241	825	69	750	24	750	24
11	175	273	0.64	0.1718	0.0073	11.4918	0.5171	0.4837	0.1718	2576	71	2564	42	2544	43	2576	71
12	528	485	1.09	0.0615	0.0042	0.8401	0.0553	0. 0995	0.0615	657	148	619	31	612	13	612	13
13	564	1271	0. 44	0.1847	0.0065	12.5074	0.4961	0. 4886	0.1847	2696	58	2643	37	2565	50	2696	58
14	1278	3887	0. 33	0.0661	0.0026	1.1480	0.0483	0.1254	0.0661	809	88	776	23	762	16	762	16

表
鈫

I 2 j	含量();	× 10 ⁻⁶)	i			同位素	比值					年龄(1	Ma)			选择统计的	J年龄(Ma)
测点号	Th	n	- Th/U	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	误差 1σ	$^{207} {\rm Pb}/^{235} {\rm U}$	误差 1σ	$^{206}{\rm Pb}/^{238}{\rm U}$	误差 1σ	$^{207}\rm{Pb}/^{206}\rm{Pb}$	误差 1σ	$^{207}{\rm Pb}/^{235}{\rm U}$	误差 1σ	$^{206}{\rm Pb}/^{238}{\rm U}$	误差 1σ	年龄	误差 1σ
15	433	763	0.57	0.1781	0.0072	12.4606	0.5454	0.5042	0.1781	2635	67	2640	41	2632	47	2635	67
16	206	3509	0.06	0.1630	0.0076	10.4426	0.4858	0.4610	0.1630	2487	62	2475	43	2444	36	2487	62
17	413	2089	0.20	0.1653	0. 0069	9. 2308	0.4110	0.4019	0. 1653	2510	75	2361	41	2178	46	2510	75
18	337	489	0. 69	0.0654	0.0034	1.2390	0.0639	0.1372	0.0654	787	110	818	29	829	17	829	17
19	497	841	0.59	0.3233	0.0126	30.6612	1.3390	0.6813	0. 3233	3587	60	3508	43	3349	58	3587	60
20	67	1705	0.57	0.1716	0. 0069	11.3761	0.4537	0.4762	0.1716	2573	67	2554	37	2511	34	2573	67
21	1731	2306	0. 75	0.0522	0.0021	0.6880	0.0311	0.1006	0.0522	295	93	532	19	618	7	618	7
22	1072	2680	0.40	0.0570	0.0022	0.6927	0.0404	0.0881	0.0570	500	55	534	24	544	24	544	24
XK4-1-8	5 片岩																
01	346	3683	0.09	0. 1648	0.0078	6.4516	0.2737	0. 2828	0. 1648	2506	80	2039	37	1606	54	2506	80
02	267	392	0.68	0.0729	0.0013	1.5992	0.0275	0.1587	0.0729	1013	36	970	11	950	9	950	9
03	1082	3677	0. 29	0.0710	0.0027	1.1463	0.0469	0.1164	0.0710	967	80	775	22	710	13	710	13
64	1790	5588	0.32	0.0720	0.0025	1.2590	0.0611	0.1255	0.0720	987	68	827	27	762	22	762	22
05	699	1862	0.36	0.1723	0.0064	11.6487	0.4603	0.4867	0.1723	2580	63	2577	37	2557	39	2580	63
90	871	1272	0.68	0. 2311	0.0077	16.3628	0.7406	0.5093	0.2311	3061	53	2898	43	2654	64	3061	53
07	277	393	0.70	0. 1612	0.0056	10. 1878	0.3679	0.4567	0. 1612	2468	59	2452	33	2425	36	2468	59
08	561	1746	0.32	0. 2367	0.0073	16.6602	0.5745	0.5084	0. 2367	3098	49	2915	33	2650	37	3098	49
60	654	1312	0.50	0.0761	0. 0033	1.6552	0.0761	0.1576	0.0761	1098	87	992	29	943	18	943	18
10	269	301	0.89	0.0608	0.0061	0.8525	0.0832	0.1024	0.0608	632	218	626	46	629	18	629	18
11	257	346	0.74	0.0816	0.0042	2. 3721	0.1310	0.2104	0.0816	1235	134	1234	39	1231	27	1235	134
12	1675	8609	0. 27	0. 1025	0.0030	2.9182	0.1062	0. 2054	0.1025	1670	54	1387	28	1204	24	1670	54
13	335	1123	0.30	0.1549	0. 0049	8. 4932	0.3324	0. 3953	0.1549	2800	54	2285	36	2147	44	2800	54
14	632	2581	0. 24	0.1668	0.0057	10.8091	0.4668	0.4661	0. 1668	2526	52	2507	40	2466	56	2526	52
15	973	1763	0.55	0.0761	0. 0030	1.5560	0.0636	0. 1474	0.0761	1098	80	953	25	886	14	886	14
16	1487	9474	0.16	0.0974	0.0031	3.2041	0.1089	0. 2370	0.0974	1576	59	1458	26	1371	22	1576	59
17	983	1071	0.92	0.0605	0.0028	0.8402	0. 0395	0. 1002	0.0605	633	100	619	22	616	11	616	11
18	191	485	0. 39	0.1777	0.0054	11.8201	0.3807	0.4800	0.1777	2632	50	2590	30	2527	38	2632	50
19	4540	2582	1. 76	0.0672	0.0024	1.1907	0.0536	0. 1279	0.0672	856	74	796	25	776	22	776	22
20	272	810	0.34	0.0641	0.0039	0. 7325	0.0420	0.0832	0.0641	743	128	558	25	515	17	515	17

表 2 温泉地区片岩样品白云母40 Ar-39 Ar 阶段升温加热测年结果

Table 2 The results of ⁴⁰Ar-³⁹Ar stepwise heating dating of muscovite for the Wenquan schsit sample

$T(\ ^{\circ }\mathbb{C}\)$	$({}^{40}{\rm Ar}/{}^{39}{\rm Ar})_{\rm m}$	$({}^{36}\mathrm{Ar}/{}^{39}\mathrm{Ar})_{\mathrm{m}}$	$({}^{37}{\rm Ar_0}/{}^{39}{\rm Ar})_{\rm m}$	$({}^{38}\mathrm{Ar}\!/{}^{39}\mathrm{Ar})_{m}$	F	$^{39}{\rm Ar}~(10^{-14}{\rm mol})$	年龄(Ma)	误差(Ma)
XK4-1-8	白云母,W=30.05	5mg, WMPA(840 ~ 1	400° C) = 10.8 ± 0.	1 Ma (MSWD = 1.	02)			
680	103.8670	0. 3357	0.0826	0.0876	4. 6585	0.26	22.4	1.8
760	9.6757	0. 0255	0.0078	0.0309	2. 1227	4. 61	10. 2	0.1
800	3. 2749	0.0041	0.0720	0.0266	2.0699	1.34	10.0	0.4
840	2. 7915	0.0019	0.0041	0.0261	2.2317	7.56	10.8	0.1
880	3.0145	0.0027	0.0163	0.0263	2. 2187	3. 61	10.7	0.1
920	3.3678	0.0040	0. 0134	0.0267	2. 1785	1.85	10.5	0.3
970	3. 3054	0.0036	0.0000	0.0264	2.2486	2. 37	10.8	0.2
1020	3. 2280	0.0035	0.0158	0.0265	2. 1990	3. 10	10.6	0.2
1070	2. 7248	0.0015	0.0037	0.0260	2. 2826	5.54	11.0	0.1
1120	2. 6111	0.0011	0.0018	0. 0259	2.2667	7.61	10. 9	0.1
1200	2.6972	0.0015	0.0072	0.0260	2.2352	4.96	10.8	0.1
1400	34. 2103	0. 1089	0.0105	0.0471	2.0380	0.32	9.8	0.9

注:下标 m 代表质谱测定的同位素比值;F = ⁴⁰ Ar * /³⁹ Ar 代表放射性成因的⁴⁰ Ar 和³⁹ Ar 比值;³⁷ Ar₀ 指通过放射性衰变校正的³⁷ Ar. WMPA(840 ~ 1400℃)指 840 ~ 1400℃阶段的加权平均坪年龄

图 6 温泉样品 X4-1-8 黑云母 ⁴⁰ Ar-³⁹ Ar 阶段升温年 龄谱

Fig. 6 40 Ar- 39 Ar age spectrum of biotite in the Sample XK4-1-8 from Wenquan region

具有一定磨圆度,少数可见柱状、短柱状自形(图 5a), 表明锆石经历了一定距离搬运,为碎屑锆石。阴极发光图显 示多数锆石具有岩浆生长振荡环带,少部分具弱环带或颜色 较均匀(图 5a)。2个片岩样品的锆石 U-Pb 测试显示,绝大 多数锆石 Th/U>0.1(表1)。样品 XK4-1-2 中 22 颗碎屑锆 石年龄分布范围为 544~3587Ma(图 5d)。样品 XK4-1-8 中 20 颗碎屑锆石年龄分布范围为 515~3098Ma(图 5e)。

片岩样品 XK4-1-8 中的黑云母 Ar-Ar 同位素测年分析数 据列于表 2。840~1400℃连续 9 个温度阶段获得的加权平 均坪年龄为 10.8 ± 0.1Ma(MSWD = 1.02)(图 6、表 2), 10.8 Ma代表了冷却到黑云母 Ar-Ar 同位素体系封闭温度 (约 300℃)的时代。

4 讨论

4.1 塔什库尔干温泉地区花岗岩脉中继承锆石及围岩片岩 中碎屑锆石的源区

本文2个温泉布伦阔勒片岩样品 XK4-1-2 和 XK4-1-8 中 最小碎屑锆石年龄分别为 544Ma 和 512Ma。综合这 2 个样 品测试结果可见:温泉地区布伦阔勒群片岩沉积时代晚于 512Ma, 具有 500 ~ 550Ma、750 ~ 800Ma 及 ~ 1000Ma 的碎屑 锆石年龄峰,另外也有较多年龄为2500~2600Ma的锆石(图 7a)。而花岗岩脉中继承锆石年龄分布特征与其围岩布伦阔 勒群片岩碎屑锆石年龄分布特征明显不同,主要表现在:具 有 200~300Ma、450~550Ma 及 750Ma 的年龄峰(图 7b)。与 塔什库尔干其它地区岩石碎屑锆石年龄谱对比可见:温泉地 区布伦阔勒群的锆石年龄分布特征(图 7a)与慕士塔格峰西 侧(图 1-2))布伦阔勒群副片麻岩(Robinson et al., 2012)以 及塔什库尔干河谷东塔阿西断裂南部地区(图1-④)副片麻 岩中锆石年龄分布特征(Zhang et al., 2018)(图7c)相似,不 同点是温泉及塔阿西断裂南部碎屑岩的变质程度较低,并未 记录~200 Ma 的变质年龄(Yang et al., 2010; Robinson et al., 2012; Zhang et al., 2018; 本文)(图7c)。而温泉地区 花岗岩脉中继承锆石年龄分布特征(图7b)与公格尔山及慕 士塔格峰地区(图1-⑤)及马尔洋地区(图1-⑥)副片麻岩中 的锆石年龄分布特征(Robinson et al., 2012)(图 7c)相似。 即温泉地区花岗岩脉并非本地温泉地区沉积岩熔融产物,而 是非常可能来源于公格尔山和慕士塔格峰地区或马尔洋地

图 7 锆石 U-Pb 直方统计图

Fig. 7 Zircon U-Pb cumulative age probability plots

区的沉积岩。

结合东北帕米尔地区碎屑锆石 U-Pb 年龄及 Sr-Nd 同位 素数据与青藏高原其他地区碎屑锆石年龄数据, Robinson et al. (2012)将东北帕米尔塔什库尔干地区进行了构造单元划 分(图1、图7):慕士塔格峰西构造单元②与慕士塔格南构造 单元③同属于中帕米尔地体;公格尔山和慕士塔格峰构造单 元⑤与马尔洋构造单元⑥属于同一地体,具有与麻扎-松潘-甘孜地体相同的前中生代基底;塔阿西断裂南部构造单元④ 与羌塘地体具有相同的前中生代基底(Robinson et al., 2012)。据此划分温泉构造单元①属于中帕米尔地体(图 1),本文温泉地区布伦阔勒群片岩碎屑锆石年代学特征也支 持此观点(图7a,d)。另外碎屑锆石年代学研究还表明中帕 米尔与羌塘地体的碎屑锆石年龄分布相近(Robinson et al., 2012),即二者在其沉积时曾属于同一地体。温泉地区布伦 阔勒群片岩与羌塘地体的碎屑锆石年代分布图类似也说明 这一点(图 7a, d)。温泉构造单元(属于中帕米尔)与公格 尔山及慕士塔格峰以及马尔洋构造单元(属于麻扎-松潘-甘 孜地体)之间存在一条中生代逆冲断裂,公格尔山及慕士塔 格峰以及马尔洋构造单元位于断裂下盘(Robinson *et al.*, 2012)。东北帕米尔塔什库尔干曾发生印支期古特提斯洋闭 合事件(Yang *et al.*, 2010; Robinson *et al.*, 2012; Zhang *et al.*, 2018),二者在此时拼合为一(Robinson *et al.*, 2012)。

4.2 塔什库尔干温泉地区新生代花岗岩侵入与公格尔伸展 断裂系的关系

由上可见公格尔伸展断裂系(KES)的 E、W 两侧的构造 单元属于不同地体。然而这些地体主要区别是具有不同的 前中生代基底,它们之间的界限为中生代断裂。故此我们推 测新生代公格尔伸展断裂系是几乎沿着已存在的印支期断 裂基础上开始活动的。又由于本文温泉花岗岩脉中的继承 锆石来自断裂东侧,说明公格尔伸展断裂系初始活动时间应 不早于花岗岩脉形成时代(11.8Ma)。

卡日巴生-苦子干岩体北部黑云母 Ar-Ar 坪年龄为 11.2Ma,本文温泉地区片岩黑云母 Ar-Ar 坪年龄为 10.8 ± 0.1Ma,说明卡日巴生-苦子干岩体侵位到围岩片岩中、围岩 发生下滑剪切之后快速冷却到黑云母封闭温度的时代为 10.8~11.2Ma,这之后温泉地区岩石没有发生明显的构造热 事件。其他文献中热年代学数据也显示公格尔伸展断裂系 主断裂上盘的云母冷却年龄皆大于 8.5Ma(Robinson et al., 2007; Cai et al., 2017), 而断裂下盘云母冷却年龄明显较 低,如慕士塔格峰及公格尔山附近的云母 Ar-Ar 年龄多小于 8Ma, 最小年龄为~2Ma(Robinson et al., 2007), 即公格尔伸 展断裂系 E、W 两侧的岩石记录的冷却年龄明显不同,可推 断公格尔伸展断裂系具有一定规模和位移量。Robinson et al. (2007)根据野外观测及低温热年代学数据提出公格尔断 裂系北段的位移量大于南段位移量,北段 E-W 向水平伸展 位移量可达~20km, 而南段<3km, 并认为这种现象可能是 由于帕米尔地区弧形弯曲或向外侧逆冲过程导致的 (Robinson et al., 2007),而不支持公格尔伸展断裂系为右行 喀喇昆仑断裂的北端弯曲伸展转换部分的观点 (Ratschbacher et al., 1994; Murphy et al., 2000)。本文数据 虽然无法协助判断喀喇昆仑断裂的演化是否是公格尔伸展 断裂系形成的主要诱因,但可初步表明在公格尔伸展断裂系 形成之前或同时发生地壳部分熔融、形成花岗岩浆,而此部 分熔融过程在单纯的走滑剪切环境下难以发生。

4.3 塔什库尔干温泉地区中新世岩浆岩侵入模式

卡日巴生-苦子干岩体整体呈 NEN-SWS 走向(图1、图 2)、与公格尔断裂系相平行。说明卡日巴生-苦子干岩体的 侵入很可能与公格尔断裂系的初始活动位置类似,皆沿着 NEN-SWS 走向的中生代断裂面发生(Robinson et al., 2012)。虽然有的花岗岩脉侵入引起附近一小部分片岩显示 逆冲变形,但岩体"布丁"构造及大部分围岩变形特征表明温 泉花岗岩脉是由于该地区拉张伸展过程中形成的。即岩浆 侵入可引起局部围岩被动褶皱等变形,在围岩中同时存在伸 展和挤压构造,但以伸展构造为主。这种与断裂等构造密切 相关的模式称为"被动同构造侵入" (passive syntectonic emplacement),经常在拉张应力环境下发生(Hutton, 1988; Eliasson et al., 2003)。宏观及显微现象表明卡日巴生-苦子 干岩体及花岗岩脉内部几乎无变形,与围岩透入性面理构造 (D1)没有直接联系,围岩布伦阔勒群片岩面理构造 D1 表现 为岩石压实过程发生矿物重结晶,可能形成于东北帕米尔某 个地壳加厚或布伦阔勒群深埋的阶段。花岗岩体内部靠近 岩体与围岩边界的位置没有明显的面理,说明岩体的侵入产 生微量应变,几乎没有后期构造事件及区域应变对此岩体-围岩边界位置产生作用。花岗岩脉围岩布伦阔勒群片岩黑 云母 Ar-Ar 年龄没有明显年轻于花岗岩脉 U-Pb 年龄也说明 没有后期热事件的改造。

4.4 东北帕米尔中新世构造演化的启示

新生代印度-亚洲陆块碰撞以及持续汇聚使得青藏高原 及帕米尔高原地壳明显增厚(Rowley, 1996; Yin and Harrison, 2000; Bell and Sapkota, 2012)。地壳不断加厚并 且程度不均,导致重力不均衡,从而引起地壳局部伸展、减薄 (Stübner *et al.*, 2013a,b; Rutte *et al.*, 2017a,b),同时通过 部分熔融作用,形成大量花岗岩浆(如卡日巴生-苦子干岩体 及本文温泉片岩中花岗岩脉)。地壳局部伸展减薄的重要渠 道是伸展断裂系的活动。伸展断裂可以表现在深层次的韧 性剪切,通过应变量的增大导致地壳水平减薄。根据目前资

图 8 东北帕米尔中新世构造演化模式图 剖面位置见图 1 中 B-B'

Fig. 8 Model for the Miocene tectonic evolution of the Northeast Pamir

料,我们初步认为在12~11Ma时,公格尔伸展断裂系已经开始发生韧性变形(如本文温泉地区的韧性下滑剪切记录)。此时,在公格尔伸展断裂以及东侧库克西力克断裂的作用下 慕士塔格穹窿物质也开始缓慢折返(Sobel et al., 2011; Cai et al., 2017)(图 8a)。6~4Ma时,伴随印度亚洲陆块继续 汇聚、塔里木地块的南向下插,公格尔伸展断裂开始快速活动,并在近地表产生明显位移量,慕士塔格片麻岩穹窿也在 此时快速折返(图 8b)。塔什库尔干及邻区低温热年代学数 据存在明显6~4Ma 峰值也可以说明此过程的存在(Cao et al., 2013)。

5 结论

本研究展示了东北帕米尔塔什库尔干温泉地区岩浆岩 及围岩接触带的构造变形现象、U-Pb和 Ar-Ar 年代学测试结 果,得到的主要结论如下:

(1)东北帕米尔塔什库尔干温泉地区侵入到布伦阔勒群 片岩中的花岗岩脉锆石 U-Pb 年龄为 11.8 ±0.2Ma,与其相 邻的卡日巴生-苦子干岩体年龄近一致。

(2)花岗岩侵入体内部几乎无变形,围岩片岩主要体现 为近 E-W 向的伸展构造,局部少量挤压构造,反映了拉张为 主的应力环境。

(3) 温泉中新世花岗岩脉中继承锆石与邻区公格尔山、 慕士塔格峰构造单元岩石碎屑锆石的 U-Pb 年龄分布特征类 似,说明其具有类似松潘-甘孜地体的物质来源;围岩布伦阔 勒片岩中的碎屑锆石与慕士塔格西地区碎屑锆石的 U-Pb 年 龄分布特征相似,说明其属于中帕米尔地体。

(4)温泉布伦阔勒片岩黑云母 Ar-Ar 测年结果为 10.8 ± 0.1Ma,说明温泉地区岩石在此时已冷却到大约 300℃,并且 后期没有发生过较强烈的构造热事件。

(5)结合东北帕米尔区域构造背景,我们认为温泉地区 岩浆岩形成在东北帕米尔地壳挤压增厚向局部伸展转换的 过程中。公格尔伸展断裂系可能在此过程开始部分启动。 直到6~4Ma,公格尔伸展断裂系开始快速运动、公格尔-慕士 塔格片麻岩穹窿快速折返。

致谢 感谢张建新研究员与李广伟教授的意见与建议; 感谢马绪宣博士的建议和帮助。

References

Amidon WH and Hynek SA. 2010. Exhumational history of the north central Pamir. Tectonics, 29(5): TC5017

- Bell TH and Sapkota J. 2012. Episodic gravitational collapse and migration of the mountain chain during orogenic roll-on in the Himalayas. Journal of Metamorphic Geology, 30(7): 651-666
- Brunel M, Arnaud N, Tapponnier P, Pan Y and Wang Y. 1994. Kongur Shan normal fault: Type example of mountain building assisted by extension (Karakoram fault, eastern Pamir). Geology, 22(8): 707

-710

- Burtman VS and Molnar P. 1993. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Special Paper of the Geological Society of America, 281(2): 248 – 251
- Cai ZH, Xu ZQ, Cao H, Robinson AC, Li GW and Xu XY. 2017. Miocene exhumation of Northeast Pamir: Deformation and geo/ thermochronological evidence from western Muztaghata shear zone and Kuke ductile shear zone. Journal of Structural Geology, 102: 130 - 146
- Cao K, Bernet M, Wang GC, van der Beek P, Wang A, Zhang KX and Enkelmann E. 2013. Focused Pliocene-Quaternary exhumation of the Eastern Pamir domes, western China. Earth and Planetary Science Letters, 363: 16-26
- Chapman JB, Scoggin SH, Kapp P, Carrapa B, Ducea MN, Worthington J, Oimahmadov I and Gadoev M. 2018. Mesozoic to Cenozoic magmatic history of the Pamir. Earth and Planetary Science Letters, 482: 181-192
- Clark MK and Royden LH. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706
- Cowgill E. 2010. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China. GSA Bulletin, 122(1-2): 145-161
- DeCelles PG, Robinson DM and Zandt G. 2002. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics, 21(6): 12-1-12-25
- Ducea MN, Lutkov V, Minaev VT, Hacker B, Ratschbacher L, Luffi P, Schwab M, Gehrels GE, McWilliams M, Vervoort J and Metcalf J. 2003. Building the Pamirs: The view from the underside. Geology, 31(10): 849-852
- Eliasson T, Ahlin S and Petersson J. 2003. Emplacement mechanism and thermobarometry of the Sveconorwegian Bohus granite, SW Sweden. GFF, 125(3): 113 – 130
- Evans B, Renner J and Hirth G. 2001. A few remarks on the kinetics of static grain growth in rocks. International Journal of Earth Sciences, 90(1): 88 - 103
- Gehrels G, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N and Yin A. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30 (5): TC5016, doi: 10.1029/2011TC002868
- Hacker B, Luffi P, Lutkov V, Minaev V, Ratschbacher L, Plank T, Ducea M, Patiño-Douce A, McWilliams M and Metcalf J. 2005. Near-ultrahigh pressure processing of continental crust: Miocene crustal xenoliths from the Pamir. Journal of Petrology, 46(8): 1661 - 1687
- Hacker BR, Ratschbacher L, Rutte D, Stearns MA, Malz N, Stübner K, Kylander-Clark ARC, Pfänder JA and Everson A. 2017. Building the Pamir-Tibet Plateau-Crustal stacking, extensional collapse, and lateral extrusion in the Pamir: 3. Thermobarometry and petrochronology of deep Asian crust. Tectonics, 36: 1743 – 1766
- Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28 (4): 481-492 (in Chinese with English abstract)
- Hutton DHW. 1988. Granite emplacement mechanisms and tectonic controls: Inferences from deformation studies. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2-3): 245-255
- Jiang YH, Jiang SY, Ling HF, Zhou XR, Rui XJ and Yang WZ. 2002. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: Implications for granitoid geneses. Lithos, 63(3-4): 165-187
- Jiang YH, Liu Z, Jia RY, Liao SY, Zhou Q and Zhao P. 2012. Miocene potassic granite-syenite association in western Tibetan Plateau: Implications for shoshonitic and high Ba-Sr granite genesis. Lithos, 134 – 135: 146 – 162
- Ke S, Mo XX, Luo ZH, Zhan HM, Liang T, Li L and Li WT. 2006. Petrogenesis and geochemistry of Cenozoic Taxkorgan alkalic complex and its geological significance. Acta Petrologica Sinica, 22(4): 905

-915 (in Chinese with English abstract)

- Klemperer SL, Kennedy BM, Sastry SR, Makovsky Y, Harinarayana T and Leech ML. 2013. Mantle fluids in the Karakoram fault: Helium isotope evidence. Earth and Planetary Science Letters, 366: 59 – 70
- Lacassin R, Valli F, Arnaud N, Leloup PH, Paquette JL, Li HB, Tapponnier P, Chevalier ML, Guillot S, Maheo G and Xu ZQ. 2004. Large-scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet. Earth and Planetary Science Letters, 219(3 -4): 255 - 269
- Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571
- Ludwig KR. 2003. Isoplot/Ex Version 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley, CA: Berkeley Geochronology Center
- Luo ZH, Mo XX and Ke S. 2003. Ages of Taxkorgan alkaline intrusive complex and their geological implications. Xinjiang Geology, 21 (1): 46-50 (in Chinese with English abstract)
- Mechie J, Yuan X, Schurr B, Schneider F, Sippl C, Ratschbacher L, Minaev V, Gadoev M, Oimahmadov I, Abdybachaev U, Moldobekov B, Orunbaev S and Negmatullaev S. 2012. Crustal and uppermost mantle velocity structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide-angle seismic data. Geophysical Journal International, 188(2): 385 – 407
- Murphy MA, Yin A, Kapp P, Harrison TM, Ding L and Guo JH. 2000. Southward propagation of the Karakoram fault system, Southwest Tibet: Timing and magnitude of slip. Geology, 28(5): 451-454
- Ratschbacher L, Frisch W, Liu GH and Chen CS. 1994. Distributed deformation in southern and western Tibet during and after the India-Asian collision. Journal of Geophysical Research, 99(B10): 19917 - 19945
- Robinson AC, Yin A, Manning CE, Harrison TM, Zhang SH and Wang XF. 2004. Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China. GSA Bulletin, 116(7-8): 953-973
- Robinson AC, Yin A, Manning CE, Harrison TM, Zhang SH and Wang XF. 2007. Cenozoic evolution of the eastern Pamir: Implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen. GSA Bulletin, 119(7-8): 882-896
- Robinson AC. 2009. Evidence against Quaternary slip on the northern Karakorum Fault suggests kinematic reorganization at the western end of the Himalayan-Tibetan orogen. Earth and Planetary Science Letters, 286(1-2): 158-170
- Robinson AC, Yin A and Lovera OM. 2010. The role of footwall deformation and denudation in controlling cooling age patterns of detachment systems: An application to the Kongur Shan extensional system in the Eastern Pamir, China. Tectonophysics, 496: 28-43
- Robinson AC, Ducea M and Lapen TJ. 2012. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir. Tectonics, 31 (2): TC2016, doi: 10.1029/2011TC003013
- Rowley DB. 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth and Planetary Science Letters, 145(1-4): 1-13
- Royden LH, Burchfiel BC and van der Hilst RD. 2008. The geological evolution of the Tibetan Plateau. Science, 321(5892): 1054 1058
- Rutte D, Ratschbacher L, Khan J, Stübner K, Hacker BR, Stearns MA, Enkelmann E, Jonckheere R, Pfänder JA, Sperner B and Tichomirowa M. 2017a. Building the Pamir-Tibetan Plateau-Crustal stacking, extensional collapse, and lateral extrusion in the Central Pamir: 2. Timing and rates. Tectonics, 36(3): 385-419
- Rutte D, Ratschbacher L, Schneider S, Stübner K, Stearns MA, Gulzar MA and Hacker BR. 2017b. Building the Pamir-Tibetan Plateau-Crustal stacking, extensional collapse, and lateral extrusion in the Central Pamir: 1. Geometry and kinematics. Tectonics, 36(3): 342-384
- Schmidt J, Hacker BR, Ratschbacher L, Stübner K, Stearns M,

Kylander-Clark A, Cottle JM, Alexander A, Webb G, Gehrels G and Minaev V. 2011. Cenozoic deep crust in the Pamir. Earth and Planetary Science Letters, 312(3-4): 411-421

- Schwab M, Ratschbacher L, Siebel W, McWilliams M, Minaev V, Lutkov V, Chen FK, Stanek K, Nelson B, Frisch W and Wooden JL 2004. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics, 23(4); TC4002
- Sobel ER, Schoenbohm LM, Chen J, Thiede R, Stockli DF, Sudo M and Atrecker MR. 2011. Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis. Earth and Planetary Science Letters, 304(3-4): 369-378
- Stearns MA, Hacker BR, Ratschbacher L, Lee J, Cottle JM and Kylander-Clark A. 2013. Synchronous Oligocene-Miocene metamorphism of the Pamir and the North Himalaya driven by platescale dynamics. Geology, 41(10): 1071-1074
- Stearns MA, Hacker BR, Ratschbacher L, Rutte D and Kylander-Clark ARC. 2015. Titanite petrochronology of the Pamir gneiss domes: Implications for middle to deep crust exhumation and titanite closure to Pb and Zr diffusion. Tectonics, 34(4): 784-802
- Stübner K, Ratschbacher L, Rutte D, Stanek K, Minaev V, Wiesinger M, Gloaguen R and Project TIPAGE Members. 2013a. The giant Shakhdara migmatitic gneiss dome, Pamir, India-Asia collision zone: 1. Geometry and kinematics. Tectonics, 32(4): 948-979
- Stübner K, Ratschbacher L, Weise C, Chow J, Hofmann J, Khan J, Rutte D, Sperner B, Pfänder JA, Hacker BR, Dunkl I, Tichomirowa M, Stearns MA and Project TIPAGE Members. 2013b. The giant Shakhdara migmatitic gneiss dome, Pamir, India-Asia collision zone: 2. Timing of dome formation. Tectonics, 32(5): 1404 – 1431
- Tapponnier P, Mattauer M, Proust F and Cassaigneau C. 1981. Mesozoic ophiolites, sutures, and arge-scale tectonic movements in Afghanistan. Earth and Planetary Science Letters, 52 (2): 355 - 371
- Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G and Yang JS. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671 – 1677
- Thiede RC, Sobel ER, Chen J, Schoenbohm LM, Stockli DF, Sudo M and Strecker MR. 2013. Late Cenozoic extension and crustal doming in the India-Eurasia collision zone: New thermochronologic constraints from the NE Chinese Pamir. Tectonics, 32 (3): 763 -779
- Valli F, Leloup PH, Raquette JL, Arnaud N, Li HB, Tapponnier P, Lacassin R, Guillot S, Liu DY, Deloule E, Xu ZQ and Mahéo G.

2008. New U-Th/Pb constraints on timing of shearing and long-term slip-rate on the Karakorum fault. Tectonics, 27(5): TC5007

- Xu XY, Cai ZH, Xu ZQ and Cao H. 2017. The Miocene high-K alkaline rocks in Tashkorgan region, northeastern Pamir: Formation mechanism and tectonic implications. Geological Review, 63(3): 616-629 (in Chinese with English abstract)
- Yang WQ, Liu L, Cao YT, Wang C, He SP, Li RS and Zhu XH. 2010. Geochronological evidence of Indosinian (high-pressure) metamorphic event and its tectonic significance in Taxkorgan area of the Western Kunlun Mountains, NW China. Science China (Earth Sciences), 53(10): 1445 – 1459
- Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280
- Zhang CL, Zou HB, Ye XT and Chen XY. 2018. Tectonic evolution of the NE section of the Pamir Plateau: New evidence from field observations and zircon U-Pb geochronology. Tectonophysics, 723: 27-40
- Zhang Y, Chen W, Chen KL and Liu XY. 2006. Study on the Ar-Ar age spectrum of diagenetic I/S and the mechanism of ³⁹Ar recoil loss: Examples from the clay minerals of P-T boundary in Changxing, Zhejiang province. Geological Review, 52 (4): 556 - 561 (in Chinese with English abstract)

附中文参考文献

- 侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS 锆石微区原位 U-Pb 定年技术. 矿床地质, 28(4): 481-492
- 柯珊,莫宣学,罗照华,詹华明,梁涛,李莉,李文韬. 2006. 塔什 库尔干新生代碱性杂岩的地球化学特征及岩石成因. 岩石学 报,22(4):905-915
- 罗照华,莫宣学,柯珊. 2003. 塔什库尔干碱性杂岩体形成时代及 其地质意义. 新疆地质,21(1):46-50
- 徐晓尹,蔡志慧,许志琴,曹汇.2017.东北帕米尔塔什库尔干中新 世高钾碱性岩的成因机制与大地构造意义.地质论评,63(3): 616-629
- 张彦,陈文,陈克龙,刘新宇. 2006. 成岩混层(L/S)Ar-Ar 年龄谱型 及³⁹Ar 核反冲丢失机理研究——以浙江长兴地区 P-T 界线粘土 岩为例.地质论评,52(4):556-561